Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem12 Structured version   Visualization version   GIF version

Theorem etransclem12 46251
Description: 𝐶 applied to 𝑁. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem12.1 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem12.2 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
etransclem12 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
Distinct variable groups:   𝑀,𝑐,𝑛   𝑁,𝑐,𝑛   𝑗,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑗,𝑐)   𝐶(𝑗,𝑛,𝑐)   𝑀(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem12
StepHypRef Expression
1 etransclem12.1 . 2 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
2 oveq2 7398 . . . 4 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
32oveq1d 7405 . . 3 (𝑛 = 𝑁 → ((0...𝑛) ↑m (0...𝑀)) = ((0...𝑁) ↑m (0...𝑀)))
4 eqeq2 2742 . . 3 (𝑛 = 𝑁 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛 ↔ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
53, 4rabeqbidv 3427 . 2 (𝑛 = 𝑁 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
6 etransclem12.2 . 2 (𝜑𝑁 ∈ ℕ0)
7 ovex 7423 . . . 4 ((0...𝑁) ↑m (0...𝑀)) ∈ V
87rabex 5297 . . 3 {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ∈ V
98a1i 11 . 2 (𝜑 → {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ∈ V)
101, 5, 6, 9fvmptd3 6994 1 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cmpt 5191  cfv 6514  (class class class)co 7390  m cmap 8802  0cc0 11075  0cn0 12449  ...cfz 13475  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393
This theorem is referenced by:  etransclem16  46255  etransclem24  46263  etransclem26  46265  etransclem28  46267  etransclem31  46270  etransclem32  46271  etransclem34  46273  etransclem35  46274  etransclem37  46276  etransclem38  46277
  Copyright terms: Public domain W3C validator