![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem12 | Structured version Visualization version GIF version |
Description: 𝐶 applied to 𝑁. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem12.1 | ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
etransclem12.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
etransclem12 | ⊢ (𝜑 → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem12.1 | . 2 ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) | |
2 | oveq2 7417 | . . . 4 ⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) | |
3 | 2 | oveq1d 7424 | . . 3 ⊢ (𝑛 = 𝑁 → ((0...𝑛) ↑m (0...𝑀)) = ((0...𝑁) ↑m (0...𝑀))) |
4 | eqeq2 2745 | . . 3 ⊢ (𝑛 = 𝑁 → (Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛 ↔ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁)) | |
5 | 3, 4 | rabeqbidv 3450 | . 2 ⊢ (𝑛 = 𝑁 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
6 | etransclem12.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
7 | ovex 7442 | . . . 4 ⊢ ((0...𝑁) ↑m (0...𝑀)) ∈ V | |
8 | 7 | rabex 5333 | . . 3 ⊢ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} ∈ V |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} ∈ V) |
10 | 1, 5, 6, 9 | fvmptd3 7022 | 1 ⊢ (𝜑 → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {crab 3433 Vcvv 3475 ↦ cmpt 5232 ‘cfv 6544 (class class class)co 7409 ↑m cmap 8820 0cc0 11110 ℕ0cn0 12472 ...cfz 13484 Σcsu 15632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 |
This theorem is referenced by: etransclem16 44966 etransclem24 44974 etransclem26 44976 etransclem28 44978 etransclem31 44981 etransclem32 44982 etransclem34 44984 etransclem35 44985 etransclem37 44987 etransclem38 44988 |
Copyright terms: Public domain | W3C validator |