| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem12 | Structured version Visualization version GIF version | ||
| Description: 𝐶 applied to 𝑁. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| etransclem12.1 | ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
| etransclem12.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| etransclem12 | ⊢ (𝜑 → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | etransclem12.1 | . 2 ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) | |
| 2 | oveq2 7357 | . . . 4 ⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) | |
| 3 | 2 | oveq1d 7364 | . . 3 ⊢ (𝑛 = 𝑁 → ((0...𝑛) ↑m (0...𝑀)) = ((0...𝑁) ↑m (0...𝑀))) |
| 4 | eqeq2 2741 | . . 3 ⊢ (𝑛 = 𝑁 → (Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛 ↔ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁)) | |
| 5 | 3, 4 | rabeqbidv 3413 | . 2 ⊢ (𝑛 = 𝑁 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
| 6 | etransclem12.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 7 | ovex 7382 | . . . 4 ⊢ ((0...𝑁) ↑m (0...𝑀)) ∈ V | |
| 8 | 7 | rabex 5278 | . . 3 ⊢ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} ∈ V |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} ∈ V) |
| 10 | 1, 5, 6, 9 | fvmptd3 6953 | 1 ⊢ (𝜑 → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 0cc0 11009 ℕ0cn0 12384 ...cfz 13410 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: etransclem16 46231 etransclem24 46239 etransclem26 46241 etransclem28 46243 etransclem31 46246 etransclem32 46247 etransclem34 46249 etransclem35 46250 etransclem37 46252 etransclem38 46253 |
| Copyright terms: Public domain | W3C validator |