Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem12 Structured version   Visualization version   GIF version

Theorem etransclem12 42095
Description: 𝐶 applied to 𝑁. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem12.1 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem12.2 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
etransclem12 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
Distinct variable groups:   𝑀,𝑐,𝑛   𝑁,𝑐,𝑛   𝑗,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑗,𝑐)   𝐶(𝑗,𝑛,𝑐)   𝑀(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem12
StepHypRef Expression
1 etransclem12.1 . 2 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
2 oveq2 7031 . . . 4 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
32oveq1d 7038 . . 3 (𝑛 = 𝑁 → ((0...𝑛) ↑𝑚 (0...𝑀)) = ((0...𝑁) ↑𝑚 (0...𝑀)))
4 eqeq2 2808 . . 3 (𝑛 = 𝑁 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛 ↔ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
53, 4rabeqbidv 3433 . 2 (𝑛 = 𝑁 → {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
6 etransclem12.2 . 2 (𝜑𝑁 ∈ ℕ0)
7 ovex 7055 . . . 4 ((0...𝑁) ↑𝑚 (0...𝑀)) ∈ V
87rabex 5133 . . 3 {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ∈ V
98a1i 11 . 2 (𝜑 → {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ∈ V)
101, 5, 6, 9fvmptd3 6664 1 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1525  wcel 2083  {crab 3111  Vcvv 3440  cmpt 5047  cfv 6232  (class class class)co 7023  𝑚 cmap 8263  0cc0 10390  0cn0 11751  ...cfz 12746  Σcsu 14880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pr 5228
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-iota 6196  df-fun 6234  df-fv 6240  df-ov 7026
This theorem is referenced by:  etransclem16  42099  etransclem24  42107  etransclem26  42109  etransclem28  42111  etransclem31  42114  etransclem32  42115  etransclem34  42117  etransclem35  42118  etransclem37  42120  etransclem38  42121
  Copyright terms: Public domain W3C validator