Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem12 Structured version   Visualization version   GIF version

Theorem etransclem12 43787
Description: 𝐶 applied to 𝑁. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem12.1 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem12.2 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
etransclem12 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
Distinct variable groups:   𝑀,𝑐,𝑛   𝑁,𝑐,𝑛   𝑗,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑗,𝑐)   𝐶(𝑗,𝑛,𝑐)   𝑀(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem12
StepHypRef Expression
1 etransclem12.1 . 2 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
2 oveq2 7283 . . . 4 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
32oveq1d 7290 . . 3 (𝑛 = 𝑁 → ((0...𝑛) ↑m (0...𝑀)) = ((0...𝑁) ↑m (0...𝑀)))
4 eqeq2 2750 . . 3 (𝑛 = 𝑁 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛 ↔ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
53, 4rabeqbidv 3420 . 2 (𝑛 = 𝑁 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
6 etransclem12.2 . 2 (𝜑𝑁 ∈ ℕ0)
7 ovex 7308 . . . 4 ((0...𝑁) ↑m (0...𝑀)) ∈ V
87rabex 5256 . . 3 {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ∈ V
98a1i 11 . 2 (𝜑 → {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ∈ V)
101, 5, 6, 9fvmptd3 6898 1 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cmpt 5157  cfv 6433  (class class class)co 7275  m cmap 8615  0cc0 10871  0cn0 12233  ...cfz 13239  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278
This theorem is referenced by:  etransclem16  43791  etransclem24  43799  etransclem26  43801  etransclem28  43803  etransclem31  43806  etransclem32  43807  etransclem34  43809  etransclem35  43810  etransclem37  43812  etransclem38  43813
  Copyright terms: Public domain W3C validator