Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem12 Structured version   Visualization version   GIF version

Theorem etransclem12 45547
Description: 𝐶 applied to 𝑁. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem12.1 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem12.2 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
etransclem12 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
Distinct variable groups:   𝑀,𝑐,𝑛   𝑁,𝑐,𝑛   𝑗,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑗,𝑐)   𝐶(𝑗,𝑛,𝑐)   𝑀(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem12
StepHypRef Expression
1 etransclem12.1 . 2 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
2 oveq2 7422 . . . 4 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
32oveq1d 7429 . . 3 (𝑛 = 𝑁 → ((0...𝑛) ↑m (0...𝑀)) = ((0...𝑁) ↑m (0...𝑀)))
4 eqeq2 2739 . . 3 (𝑛 = 𝑁 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛 ↔ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
53, 4rabeqbidv 3444 . 2 (𝑛 = 𝑁 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
6 etransclem12.2 . 2 (𝜑𝑁 ∈ ℕ0)
7 ovex 7447 . . . 4 ((0...𝑁) ↑m (0...𝑀)) ∈ V
87rabex 5328 . . 3 {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ∈ V
98a1i 11 . 2 (𝜑 → {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ∈ V)
101, 5, 6, 9fvmptd3 7022 1 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {crab 3427  Vcvv 3469  cmpt 5225  cfv 6542  (class class class)co 7414  m cmap 8834  0cc0 11124  0cn0 12488  ...cfz 13502  Σcsu 15650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417
This theorem is referenced by:  etransclem16  45551  etransclem24  45559  etransclem26  45561  etransclem28  45563  etransclem31  45566  etransclem32  45567  etransclem34  45569  etransclem35  45570  etransclem37  45572  etransclem38  45573
  Copyright terms: Public domain W3C validator