Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem26 Structured version   Visualization version   GIF version

Theorem etransclem26 46251
Description: Every term in the sum of the 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem26.p (𝜑𝑃 ∈ ℕ)
etransclem26.m (𝜑𝑀 ∈ ℕ0)
etransclem26.n (𝜑𝑁 ∈ ℕ0)
etransclem26.jz (𝜑𝐽 ∈ ℤ)
etransclem26.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem26.d (𝜑𝐷 ∈ (𝐶𝑁))
Assertion
Ref Expression
etransclem26 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)
Distinct variable groups:   𝐷,𝑐,𝑗   𝑀,𝑐,𝑗,𝑛   𝑁,𝑐,𝑛   𝜑,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑗,𝑛,𝑐)   𝐷(𝑛)   𝑃(𝑗,𝑛,𝑐)   𝐽(𝑗,𝑛,𝑐)   𝑁(𝑗)

Proof of Theorem etransclem26
StepHypRef Expression
1 etransclem26.d . . . . . . . . . 10 (𝜑𝐷 ∈ (𝐶𝑁))
2 etransclem26.c . . . . . . . . . . 11 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
3 etransclem26.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
42, 3etransclem12 46237 . . . . . . . . . 10 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
51, 4eleqtrd 2830 . . . . . . . . 9 (𝜑𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
6 fveq1 6839 . . . . . . . . . . . 12 (𝑐 = 𝐷 → (𝑐𝑗) = (𝐷𝑗))
76sumeq2sdv 15645 . . . . . . . . . . 11 (𝑐 = 𝐷 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
87eqeq1d 2731 . . . . . . . . . 10 (𝑐 = 𝐷 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁 ↔ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
98elrab 3656 . . . . . . . . 9 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
105, 9sylib 218 . . . . . . . 8 (𝜑 → (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
1110simprd 495 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
1211eqcomd 2735 . . . . . 6 (𝜑𝑁 = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
1312fveq2d 6844 . . . . 5 (𝜑 → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)))
1413oveq1d 7384 . . . 4 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))))
15 nfcv 2891 . . . . 5 𝑗𝐷
16 fzfid 13914 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
17 nn0ex 12424 . . . . . . 7 0 ∈ V
18 fzssnn0 45307 . . . . . . 7 (0...𝑁) ⊆ ℕ0
19 mapss 8839 . . . . . . 7 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
2017, 18, 19mp2an 692 . . . . . 6 ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀))
2110simpld 494 . . . . . 6 (𝜑𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)))
2220, 21sselid 3941 . . . . 5 (𝜑𝐷 ∈ (ℕ0m (0...𝑀)))
2315, 16, 22mccl 45589 . . . 4 (𝜑 → ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
2414, 23eqeltrd 2828 . . 3 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
2524nnzd 12532 . 2 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ)
26 etransclem26.p . . . 4 (𝜑𝑃 ∈ ℕ)
27 etransclem26.m . . . 4 (𝜑𝑀 ∈ ℕ0)
28 elmapi 8799 . . . . 5 (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝑁))
2921, 28syl 17 . . . 4 (𝜑𝐷:(0...𝑀)⟶(0...𝑁))
30 etransclem26.jz . . . 4 (𝜑𝐽 ∈ ℤ)
3126, 27, 29, 30etransclem10 46235 . . 3 (𝜑 → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) ∈ ℤ)
32 fzfid 13914 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
3326adantr 480 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ)
3429adantr 480 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝑁))
35 0z 12516 . . . . . . . 8 0 ∈ ℤ
36 fzp1ss 13512 . . . . . . . 8 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
3735, 36ax-mp 5 . . . . . . 7 ((0 + 1)...𝑀) ⊆ (0...𝑀)
38 1e0p1 12667 . . . . . . . . . 10 1 = (0 + 1)
3938oveq1i 7379 . . . . . . . . 9 (1...𝑀) = ((0 + 1)...𝑀)
4039eleq2i 2820 . . . . . . . 8 (𝑗 ∈ (1...𝑀) ↔ 𝑗 ∈ ((0 + 1)...𝑀))
4140biimpi 216 . . . . . . 7 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ((0 + 1)...𝑀))
4237, 41sselid 3941 . . . . . 6 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
4342adantl 481 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
4430adantr 480 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
4533, 34, 43, 44etransclem3 46228 . . . 4 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4632, 45fprodzcl 15896 . . 3 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4731, 46zmulcld 12620 . 2 (𝜑 → (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ)
4825, 47zmulcld 12620 1 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  wss 3911  ifcif 4484   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cmin 11381   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  ...cfz 13444  cexp 14002  !cfa 14214  Σcsu 15628  cprod 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-prod 15846
This theorem is referenced by:  etransclem28  46253  etransclem36  46261  etransclem38  46263
  Copyright terms: Public domain W3C validator