Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem26 Structured version   Visualization version   GIF version

Theorem etransclem26 46269
Description: Every term in the sum of the 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem26.p (𝜑𝑃 ∈ ℕ)
etransclem26.m (𝜑𝑀 ∈ ℕ0)
etransclem26.n (𝜑𝑁 ∈ ℕ0)
etransclem26.jz (𝜑𝐽 ∈ ℤ)
etransclem26.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem26.d (𝜑𝐷 ∈ (𝐶𝑁))
Assertion
Ref Expression
etransclem26 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)
Distinct variable groups:   𝐷,𝑐,𝑗   𝑀,𝑐,𝑗,𝑛   𝑁,𝑐,𝑛   𝜑,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑗,𝑛,𝑐)   𝐷(𝑛)   𝑃(𝑗,𝑛,𝑐)   𝐽(𝑗,𝑛,𝑐)   𝑁(𝑗)

Proof of Theorem etransclem26
StepHypRef Expression
1 etransclem26.d . . . . . . . . . 10 (𝜑𝐷 ∈ (𝐶𝑁))
2 etransclem26.c . . . . . . . . . . 11 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
3 etransclem26.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
42, 3etransclem12 46255 . . . . . . . . . 10 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
51, 4eleqtrd 2837 . . . . . . . . 9 (𝜑𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
6 fveq1 6880 . . . . . . . . . . . 12 (𝑐 = 𝐷 → (𝑐𝑗) = (𝐷𝑗))
76sumeq2sdv 15724 . . . . . . . . . . 11 (𝑐 = 𝐷 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
87eqeq1d 2738 . . . . . . . . . 10 (𝑐 = 𝐷 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁 ↔ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
98elrab 3676 . . . . . . . . 9 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
105, 9sylib 218 . . . . . . . 8 (𝜑 → (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
1110simprd 495 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
1211eqcomd 2742 . . . . . 6 (𝜑𝑁 = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
1312fveq2d 6885 . . . . 5 (𝜑 → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)))
1413oveq1d 7425 . . . 4 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))))
15 nfcv 2899 . . . . 5 𝑗𝐷
16 fzfid 13996 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
17 nn0ex 12512 . . . . . . 7 0 ∈ V
18 fzssnn0 45325 . . . . . . 7 (0...𝑁) ⊆ ℕ0
19 mapss 8908 . . . . . . 7 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
2017, 18, 19mp2an 692 . . . . . 6 ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀))
2110simpld 494 . . . . . 6 (𝜑𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)))
2220, 21sselid 3961 . . . . 5 (𝜑𝐷 ∈ (ℕ0m (0...𝑀)))
2315, 16, 22mccl 45607 . . . 4 (𝜑 → ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
2414, 23eqeltrd 2835 . . 3 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
2524nnzd 12620 . 2 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ)
26 etransclem26.p . . . 4 (𝜑𝑃 ∈ ℕ)
27 etransclem26.m . . . 4 (𝜑𝑀 ∈ ℕ0)
28 elmapi 8868 . . . . 5 (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝑁))
2921, 28syl 17 . . . 4 (𝜑𝐷:(0...𝑀)⟶(0...𝑁))
30 etransclem26.jz . . . 4 (𝜑𝐽 ∈ ℤ)
3126, 27, 29, 30etransclem10 46253 . . 3 (𝜑 → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) ∈ ℤ)
32 fzfid 13996 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
3326adantr 480 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ)
3429adantr 480 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝑁))
35 0z 12604 . . . . . . . 8 0 ∈ ℤ
36 fzp1ss 13597 . . . . . . . 8 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
3735, 36ax-mp 5 . . . . . . 7 ((0 + 1)...𝑀) ⊆ (0...𝑀)
38 1e0p1 12755 . . . . . . . . . 10 1 = (0 + 1)
3938oveq1i 7420 . . . . . . . . 9 (1...𝑀) = ((0 + 1)...𝑀)
4039eleq2i 2827 . . . . . . . 8 (𝑗 ∈ (1...𝑀) ↔ 𝑗 ∈ ((0 + 1)...𝑀))
4140biimpi 216 . . . . . . 7 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ((0 + 1)...𝑀))
4237, 41sselid 3961 . . . . . 6 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
4342adantl 481 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
4430adantr 480 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
4533, 34, 43, 44etransclem3 46246 . . . 4 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4632, 45fprodzcl 15975 . . 3 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4731, 46zmulcld 12708 . 2 (𝜑 → (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ)
4825, 47zmulcld 12708 1 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  wss 3931  ifcif 4505   class class class wbr 5124  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cmin 11471   / cdiv 11899  cn 12245  0cn0 12506  cz 12593  ...cfz 13529  cexp 14084  !cfa 14296  Σcsu 15707  cprod 15924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-prod 15925
This theorem is referenced by:  etransclem28  46271  etransclem36  46279  etransclem38  46281
  Copyright terms: Public domain W3C validator