Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem26 Structured version   Visualization version   GIF version

Theorem etransclem26 42902
Description: Every term in the sum of the 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem26.p (𝜑𝑃 ∈ ℕ)
etransclem26.m (𝜑𝑀 ∈ ℕ0)
etransclem26.n (𝜑𝑁 ∈ ℕ0)
etransclem26.jz (𝜑𝐽 ∈ ℤ)
etransclem26.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem26.d (𝜑𝐷 ∈ (𝐶𝑁))
Assertion
Ref Expression
etransclem26 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)
Distinct variable groups:   𝐷,𝑐,𝑗   𝑀,𝑐,𝑗,𝑛   𝑁,𝑐,𝑛   𝜑,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑗,𝑛,𝑐)   𝐷(𝑛)   𝑃(𝑗,𝑛,𝑐)   𝐽(𝑗,𝑛,𝑐)   𝑁(𝑗)

Proof of Theorem etransclem26
StepHypRef Expression
1 etransclem26.d . . . . . . . . . 10 (𝜑𝐷 ∈ (𝐶𝑁))
2 etransclem26.c . . . . . . . . . . 11 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
3 etransclem26.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
42, 3etransclem12 42888 . . . . . . . . . 10 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
51, 4eleqtrd 2892 . . . . . . . . 9 (𝜑𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
6 fveq1 6644 . . . . . . . . . . . 12 (𝑐 = 𝐷 → (𝑐𝑗) = (𝐷𝑗))
76sumeq2sdv 15053 . . . . . . . . . . 11 (𝑐 = 𝐷 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
87eqeq1d 2800 . . . . . . . . . 10 (𝑐 = 𝐷 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁 ↔ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
98elrab 3628 . . . . . . . . 9 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
105, 9sylib 221 . . . . . . . 8 (𝜑 → (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
1110simprd 499 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
1211eqcomd 2804 . . . . . 6 (𝜑𝑁 = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
1312fveq2d 6649 . . . . 5 (𝜑 → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)))
1413oveq1d 7150 . . . 4 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))))
15 nfcv 2955 . . . . 5 𝑗𝐷
16 fzfid 13336 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
17 nn0ex 11891 . . . . . . 7 0 ∈ V
18 fzssnn0 41949 . . . . . . 7 (0...𝑁) ⊆ ℕ0
19 mapss 8436 . . . . . . 7 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
2017, 18, 19mp2an 691 . . . . . 6 ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀))
2110simpld 498 . . . . . 6 (𝜑𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)))
2220, 21sseldi 3913 . . . . 5 (𝜑𝐷 ∈ (ℕ0m (0...𝑀)))
2315, 16, 22mccl 42240 . . . 4 (𝜑 → ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
2414, 23eqeltrd 2890 . . 3 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
2524nnzd 12074 . 2 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ)
26 etransclem26.p . . . 4 (𝜑𝑃 ∈ ℕ)
27 etransclem26.m . . . 4 (𝜑𝑀 ∈ ℕ0)
28 elmapi 8411 . . . . 5 (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝑁))
2921, 28syl 17 . . . 4 (𝜑𝐷:(0...𝑀)⟶(0...𝑁))
30 etransclem26.jz . . . 4 (𝜑𝐽 ∈ ℤ)
3126, 27, 29, 30etransclem10 42886 . . 3 (𝜑 → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) ∈ ℤ)
32 fzfid 13336 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
3326adantr 484 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ)
3429adantr 484 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝑁))
35 0z 11980 . . . . . . . 8 0 ∈ ℤ
36 fzp1ss 12953 . . . . . . . 8 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
3735, 36ax-mp 5 . . . . . . 7 ((0 + 1)...𝑀) ⊆ (0...𝑀)
38 1e0p1 12128 . . . . . . . . . 10 1 = (0 + 1)
3938oveq1i 7145 . . . . . . . . 9 (1...𝑀) = ((0 + 1)...𝑀)
4039eleq2i 2881 . . . . . . . 8 (𝑗 ∈ (1...𝑀) ↔ 𝑗 ∈ ((0 + 1)...𝑀))
4140biimpi 219 . . . . . . 7 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ((0 + 1)...𝑀))
4237, 41sseldi 3913 . . . . . 6 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
4342adantl 485 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
4430adantr 484 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
4533, 34, 43, 44etransclem3 42879 . . . 4 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4632, 45fprodzcl 15300 . . 3 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4731, 46zmulcld 12081 . 2 (𝜑 → (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ)
4825, 47zmulcld 12081 1 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  wss 3881  ifcif 4425   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cmin 10859   / cdiv 11286  cn 11625  0cn0 11885  cz 11969  ...cfz 12885  cexp 13425  !cfa 13629  Σcsu 15034  cprod 15251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-prod 15252
This theorem is referenced by:  etransclem28  42904  etransclem36  42912  etransclem38  42914
  Copyright terms: Public domain W3C validator