Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem26 Structured version   Visualization version   GIF version

Theorem etransclem26 46258
Description: Every term in the sum of the 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem26.p (𝜑𝑃 ∈ ℕ)
etransclem26.m (𝜑𝑀 ∈ ℕ0)
etransclem26.n (𝜑𝑁 ∈ ℕ0)
etransclem26.jz (𝜑𝐽 ∈ ℤ)
etransclem26.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem26.d (𝜑𝐷 ∈ (𝐶𝑁))
Assertion
Ref Expression
etransclem26 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)
Distinct variable groups:   𝐷,𝑐,𝑗   𝑀,𝑐,𝑗,𝑛   𝑁,𝑐,𝑛   𝜑,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑗,𝑛,𝑐)   𝐷(𝑛)   𝑃(𝑗,𝑛,𝑐)   𝐽(𝑗,𝑛,𝑐)   𝑁(𝑗)

Proof of Theorem etransclem26
StepHypRef Expression
1 etransclem26.d . . . . . . . . . 10 (𝜑𝐷 ∈ (𝐶𝑁))
2 etransclem26.c . . . . . . . . . . 11 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
3 etransclem26.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
42, 3etransclem12 46244 . . . . . . . . . 10 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
51, 4eleqtrd 2830 . . . . . . . . 9 (𝜑𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
6 fveq1 6857 . . . . . . . . . . . 12 (𝑐 = 𝐷 → (𝑐𝑗) = (𝐷𝑗))
76sumeq2sdv 15669 . . . . . . . . . . 11 (𝑐 = 𝐷 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
87eqeq1d 2731 . . . . . . . . . 10 (𝑐 = 𝐷 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁 ↔ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
98elrab 3659 . . . . . . . . 9 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
105, 9sylib 218 . . . . . . . 8 (𝜑 → (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
1110simprd 495 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
1211eqcomd 2735 . . . . . 6 (𝜑𝑁 = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
1312fveq2d 6862 . . . . 5 (𝜑 → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)))
1413oveq1d 7402 . . . 4 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))))
15 nfcv 2891 . . . . 5 𝑗𝐷
16 fzfid 13938 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
17 nn0ex 12448 . . . . . . 7 0 ∈ V
18 fzssnn0 45314 . . . . . . 7 (0...𝑁) ⊆ ℕ0
19 mapss 8862 . . . . . . 7 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
2017, 18, 19mp2an 692 . . . . . 6 ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀))
2110simpld 494 . . . . . 6 (𝜑𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)))
2220, 21sselid 3944 . . . . 5 (𝜑𝐷 ∈ (ℕ0m (0...𝑀)))
2315, 16, 22mccl 45596 . . . 4 (𝜑 → ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
2414, 23eqeltrd 2828 . . 3 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
2524nnzd 12556 . 2 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ)
26 etransclem26.p . . . 4 (𝜑𝑃 ∈ ℕ)
27 etransclem26.m . . . 4 (𝜑𝑀 ∈ ℕ0)
28 elmapi 8822 . . . . 5 (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝑁))
2921, 28syl 17 . . . 4 (𝜑𝐷:(0...𝑀)⟶(0...𝑁))
30 etransclem26.jz . . . 4 (𝜑𝐽 ∈ ℤ)
3126, 27, 29, 30etransclem10 46242 . . 3 (𝜑 → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) ∈ ℤ)
32 fzfid 13938 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
3326adantr 480 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ)
3429adantr 480 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝑁))
35 0z 12540 . . . . . . . 8 0 ∈ ℤ
36 fzp1ss 13536 . . . . . . . 8 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
3735, 36ax-mp 5 . . . . . . 7 ((0 + 1)...𝑀) ⊆ (0...𝑀)
38 1e0p1 12691 . . . . . . . . . 10 1 = (0 + 1)
3938oveq1i 7397 . . . . . . . . 9 (1...𝑀) = ((0 + 1)...𝑀)
4039eleq2i 2820 . . . . . . . 8 (𝑗 ∈ (1...𝑀) ↔ 𝑗 ∈ ((0 + 1)...𝑀))
4140biimpi 216 . . . . . . 7 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ((0 + 1)...𝑀))
4237, 41sselid 3944 . . . . . 6 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
4342adantl 481 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
4430adantr 480 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
4533, 34, 43, 44etransclem3 46235 . . . 4 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4632, 45fprodzcl 15920 . . 3 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4731, 46zmulcld 12644 . 2 (𝜑 → (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ)
4825, 47zmulcld 12644 1 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  wss 3914  ifcif 4488   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  ...cfz 13468  cexp 14026  !cfa 14238  Σcsu 15652  cprod 15869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-prod 15870
This theorem is referenced by:  etransclem28  46260  etransclem36  46268  etransclem38  46270
  Copyright terms: Public domain W3C validator