![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem11 | Structured version Visualization version GIF version |
Description: A change of bound variable, often used in proofs for etransc 44989. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem11 | ⊢ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7416 | . . . . 5 ⊢ (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚)) | |
2 | 1 | oveq1d 7423 | . . . 4 ⊢ (𝑛 = 𝑚 → ((0...𝑛) ↑m (0...𝑀)) = ((0...𝑚) ↑m (0...𝑀))) |
3 | 2 | rabeqdv 3447 | . . 3 ⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
4 | fveq2 6891 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑐‘𝑗) = (𝑐‘𝑘)) | |
5 | 4 | cbvsumv 15641 | . . . . . . 7 ⊢ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) |
6 | fveq1 6890 | . . . . . . . 8 ⊢ (𝑐 = 𝑑 → (𝑐‘𝑘) = (𝑑‘𝑘)) | |
7 | 6 | sumeq2sdv 15649 | . . . . . . 7 ⊢ (𝑐 = 𝑑 → Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘)) |
8 | 5, 7 | eqtrid 2784 | . . . . . 6 ⊢ (𝑐 = 𝑑 → Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘)) |
9 | 8 | eqeq1d 2734 | . . . . 5 ⊢ (𝑐 = 𝑑 → (Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛)) |
10 | 9 | cbvrabv 3442 | . . . 4 ⊢ {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛} |
11 | eqeq2 2744 | . . . . 5 ⊢ (𝑛 = 𝑚 → (Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚)) | |
12 | 11 | rabbidv 3440 | . . . 4 ⊢ (𝑛 = 𝑚 → {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
13 | 10, 12 | eqtrid 2784 | . . 3 ⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
14 | 3, 13 | eqtrd 2772 | . 2 ⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
15 | 14 | cbvmptv 5261 | 1 ⊢ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 {crab 3432 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7408 ↑m cmap 8819 0cc0 11109 ℕ0cn0 12471 ...cfz 13483 Σcsu 15631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-seq 13966 df-sum 15632 |
This theorem is referenced by: etransclem32 44972 etransclem33 44973 etransclem36 44976 etransclem37 44977 etransclem38 44978 etransclem40 44980 etransclem41 44981 etransclem42 44982 etransclem44 44984 etransclem45 44985 |
Copyright terms: Public domain | W3C validator |