| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem11 | Structured version Visualization version GIF version | ||
| Description: A change of bound variable, often used in proofs for etransc 46312. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| etransclem11 | ⊢ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7413 | . . . . 5 ⊢ (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚)) | |
| 2 | 1 | oveq1d 7420 | . . . 4 ⊢ (𝑛 = 𝑚 → ((0...𝑛) ↑m (0...𝑀)) = ((0...𝑚) ↑m (0...𝑀))) |
| 3 | 2 | rabeqdv 3431 | . . 3 ⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
| 4 | fveq2 6876 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑐‘𝑗) = (𝑐‘𝑘)) | |
| 5 | 4 | cbvsumv 15712 | . . . . . . 7 ⊢ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) |
| 6 | fveq1 6875 | . . . . . . . 8 ⊢ (𝑐 = 𝑑 → (𝑐‘𝑘) = (𝑑‘𝑘)) | |
| 7 | 6 | sumeq2sdv 15719 | . . . . . . 7 ⊢ (𝑐 = 𝑑 → Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘)) |
| 8 | 5, 7 | eqtrid 2782 | . . . . . 6 ⊢ (𝑐 = 𝑑 → Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘)) |
| 9 | 8 | eqeq1d 2737 | . . . . 5 ⊢ (𝑐 = 𝑑 → (Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛)) |
| 10 | 9 | cbvrabv 3426 | . . . 4 ⊢ {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛} |
| 11 | eqeq2 2747 | . . . . 5 ⊢ (𝑛 = 𝑚 → (Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚)) | |
| 12 | 11 | rabbidv 3423 | . . . 4 ⊢ (𝑛 = 𝑚 → {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
| 13 | 10, 12 | eqtrid 2782 | . . 3 ⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
| 14 | 3, 13 | eqtrd 2770 | . 2 ⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
| 15 | 14 | cbvmptv 5225 | 1 ⊢ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {crab 3415 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 0cc0 11129 ℕ0cn0 12501 ...cfz 13524 Σcsu 15702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-xp 5660 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6484 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-seq 14020 df-sum 15703 |
| This theorem is referenced by: etransclem32 46295 etransclem33 46296 etransclem36 46299 etransclem37 46300 etransclem38 46301 etransclem40 46303 etransclem41 46304 etransclem42 46305 etransclem44 46307 etransclem45 46308 |
| Copyright terms: Public domain | W3C validator |