Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem11 Structured version   Visualization version   GIF version

Theorem etransclem11 46243
Description: A change of bound variable, often used in proofs for etransc 46281. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Assertion
Ref Expression
etransclem11 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
Distinct variable groups:   𝑀,𝑐,𝑑,𝑗,𝑘   𝑚,𝑀,𝑐,𝑑,𝑗   𝑛,𝑀,𝑐,𝑑,𝑘   𝑚,𝑛

Proof of Theorem etransclem11
StepHypRef Expression
1 oveq2 7395 . . . . 5 (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚))
21oveq1d 7402 . . . 4 (𝑛 = 𝑚 → ((0...𝑛) ↑m (0...𝑀)) = ((0...𝑚) ↑m (0...𝑀)))
32rabeqdv 3421 . . 3 (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
4 fveq2 6858 . . . . . . . 8 (𝑗 = 𝑘 → (𝑐𝑗) = (𝑐𝑘))
54cbvsumv 15662 . . . . . . 7 Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘)
6 fveq1 6857 . . . . . . . 8 (𝑐 = 𝑑 → (𝑐𝑘) = (𝑑𝑘))
76sumeq2sdv 15669 . . . . . . 7 (𝑐 = 𝑑 → Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = Σ𝑘 ∈ (0...𝑀)(𝑑𝑘))
85, 7eqtrid 2776 . . . . . 6 (𝑐 = 𝑑 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑑𝑘))
98eqeq1d 2731 . . . . 5 (𝑐 = 𝑑 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛))
109cbvrabv 3416 . . . 4 {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛}
11 eqeq2 2741 . . . . 5 (𝑛 = 𝑚 → (Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚))
1211rabbidv 3413 . . . 4 (𝑛 = 𝑚 → {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
1310, 12eqtrid 2776 . . 3 (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
143, 13eqtrd 2764 . 2 (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
1514cbvmptv 5211 1 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {crab 3405  cmpt 5188  cfv 6511  (class class class)co 7387  m cmap 8799  0cc0 11068  0cn0 12442  ...cfz 13468  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seq 13967  df-sum 15653
This theorem is referenced by:  etransclem32  46264  etransclem33  46265  etransclem36  46268  etransclem37  46269  etransclem38  46270  etransclem40  46272  etransclem41  46273  etransclem42  46274  etransclem44  46276  etransclem45  46277
  Copyright terms: Public domain W3C validator