Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem11 | Structured version Visualization version GIF version |
Description: A change of bound variable, often used in proofs for etransc 43313. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem11 | ⊢ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7158 | . . . . 5 ⊢ (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚)) | |
2 | 1 | oveq1d 7165 | . . . 4 ⊢ (𝑛 = 𝑚 → ((0...𝑛) ↑m (0...𝑀)) = ((0...𝑚) ↑m (0...𝑀))) |
3 | 2 | rabeqdv 3397 | . . 3 ⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
4 | fveq2 6658 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑐‘𝑗) = (𝑐‘𝑘)) | |
5 | 4 | cbvsumv 15101 | . . . . . . 7 ⊢ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) |
6 | fveq1 6657 | . . . . . . . 8 ⊢ (𝑐 = 𝑑 → (𝑐‘𝑘) = (𝑑‘𝑘)) | |
7 | 6 | sumeq2sdv 15109 | . . . . . . 7 ⊢ (𝑐 = 𝑑 → Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘)) |
8 | 5, 7 | syl5eq 2805 | . . . . . 6 ⊢ (𝑐 = 𝑑 → Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘)) |
9 | 8 | eqeq1d 2760 | . . . . 5 ⊢ (𝑐 = 𝑑 → (Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛)) |
10 | 9 | cbvrabv 3404 | . . . 4 ⊢ {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛} |
11 | eqeq2 2770 | . . . . 5 ⊢ (𝑛 = 𝑚 → (Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚)) | |
12 | 11 | rabbidv 3392 | . . . 4 ⊢ (𝑛 = 𝑚 → {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
13 | 10, 12 | syl5eq 2805 | . . 3 ⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
14 | 3, 13 | eqtrd 2793 | . 2 ⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
15 | 14 | cbvmptv 5135 | 1 ⊢ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 {crab 3074 ↦ cmpt 5112 ‘cfv 6335 (class class class)co 7150 ↑m cmap 8416 0cc0 10575 ℕ0cn0 11934 ...cfz 12939 Σcsu 15090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-seq 13419 df-sum 15091 |
This theorem is referenced by: etransclem32 43296 etransclem33 43297 etransclem36 43300 etransclem37 43301 etransclem38 43302 etransclem40 43304 etransclem41 43305 etransclem42 43306 etransclem44 43308 etransclem45 43309 |
Copyright terms: Public domain | W3C validator |