Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem11 Structured version   Visualization version   GIF version

Theorem etransclem11 46250
Description: A change of bound variable, often used in proofs for etransc 46288. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Assertion
Ref Expression
etransclem11 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
Distinct variable groups:   𝑀,𝑐,𝑑,𝑗,𝑘   𝑚,𝑀,𝑐,𝑑,𝑗   𝑛,𝑀,𝑐,𝑑,𝑘   𝑚,𝑛

Proof of Theorem etransclem11
StepHypRef Expression
1 oveq2 7398 . . . . 5 (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚))
21oveq1d 7405 . . . 4 (𝑛 = 𝑚 → ((0...𝑛) ↑m (0...𝑀)) = ((0...𝑚) ↑m (0...𝑀)))
32rabeqdv 3424 . . 3 (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
4 fveq2 6861 . . . . . . . 8 (𝑗 = 𝑘 → (𝑐𝑗) = (𝑐𝑘))
54cbvsumv 15669 . . . . . . 7 Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘)
6 fveq1 6860 . . . . . . . 8 (𝑐 = 𝑑 → (𝑐𝑘) = (𝑑𝑘))
76sumeq2sdv 15676 . . . . . . 7 (𝑐 = 𝑑 → Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = Σ𝑘 ∈ (0...𝑀)(𝑑𝑘))
85, 7eqtrid 2777 . . . . . 6 (𝑐 = 𝑑 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑑𝑘))
98eqeq1d 2732 . . . . 5 (𝑐 = 𝑑 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛))
109cbvrabv 3419 . . . 4 {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛}
11 eqeq2 2742 . . . . 5 (𝑛 = 𝑚 → (Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚))
1211rabbidv 3416 . . . 4 (𝑛 = 𝑚 → {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
1310, 12eqtrid 2777 . . 3 (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
143, 13eqtrd 2765 . 2 (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
1514cbvmptv 5214 1 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {crab 3408  cmpt 5191  cfv 6514  (class class class)co 7390  m cmap 8802  0cc0 11075  0cn0 12449  ...cfz 13475  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seq 13974  df-sum 15660
This theorem is referenced by:  etransclem32  46271  etransclem33  46272  etransclem36  46275  etransclem37  46276  etransclem38  46277  etransclem40  46279  etransclem41  46280  etransclem42  46281  etransclem44  46283  etransclem45  46284
  Copyright terms: Public domain W3C validator