![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem11 | Structured version Visualization version GIF version |
Description: A change of bound variable, often used in proofs for etransc 46204. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem11 | ⊢ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . . . 5 ⊢ (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚)) | |
2 | 1 | oveq1d 7463 | . . . 4 ⊢ (𝑛 = 𝑚 → ((0...𝑛) ↑m (0...𝑀)) = ((0...𝑚) ↑m (0...𝑀))) |
3 | 2 | rabeqdv 3459 | . . 3 ⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
4 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑐‘𝑗) = (𝑐‘𝑘)) | |
5 | 4 | cbvsumv 15744 | . . . . . . 7 ⊢ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) |
6 | fveq1 6919 | . . . . . . . 8 ⊢ (𝑐 = 𝑑 → (𝑐‘𝑘) = (𝑑‘𝑘)) | |
7 | 6 | sumeq2sdv 15751 | . . . . . . 7 ⊢ (𝑐 = 𝑑 → Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘)) |
8 | 5, 7 | eqtrid 2792 | . . . . . 6 ⊢ (𝑐 = 𝑑 → Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘)) |
9 | 8 | eqeq1d 2742 | . . . . 5 ⊢ (𝑐 = 𝑑 → (Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛)) |
10 | 9 | cbvrabv 3454 | . . . 4 ⊢ {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛} |
11 | eqeq2 2752 | . . . . 5 ⊢ (𝑛 = 𝑚 → (Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚)) | |
12 | 11 | rabbidv 3451 | . . . 4 ⊢ (𝑛 = 𝑚 → {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
13 | 10, 12 | eqtrid 2792 | . . 3 ⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
14 | 3, 13 | eqtrd 2780 | . 2 ⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
15 | 14 | cbvmptv 5279 | 1 ⊢ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {crab 3443 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 0cc0 11184 ℕ0cn0 12553 ...cfz 13567 Σcsu 15734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seq 14053 df-sum 15735 |
This theorem is referenced by: etransclem32 46187 etransclem33 46188 etransclem36 46191 etransclem37 46192 etransclem38 46193 etransclem40 46195 etransclem41 46196 etransclem42 46197 etransclem44 46199 etransclem45 46200 |
Copyright terms: Public domain | W3C validator |