| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem11 | Structured version Visualization version GIF version | ||
| Description: A change of bound variable, often used in proofs for etransc 46391. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| etransclem11 | ⊢ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . . . . 5 ⊢ (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚)) | |
| 2 | 1 | oveq1d 7361 | . . . 4 ⊢ (𝑛 = 𝑚 → ((0...𝑛) ↑m (0...𝑀)) = ((0...𝑚) ↑m (0...𝑀))) |
| 3 | 2 | rabeqdv 3410 | . . 3 ⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
| 4 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑐‘𝑗) = (𝑐‘𝑘)) | |
| 5 | 4 | cbvsumv 15603 | . . . . . . 7 ⊢ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) |
| 6 | fveq1 6821 | . . . . . . . 8 ⊢ (𝑐 = 𝑑 → (𝑐‘𝑘) = (𝑑‘𝑘)) | |
| 7 | 6 | sumeq2sdv 15610 | . . . . . . 7 ⊢ (𝑐 = 𝑑 → Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘)) |
| 8 | 5, 7 | eqtrid 2778 | . . . . . 6 ⊢ (𝑐 = 𝑑 → Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘)) |
| 9 | 8 | eqeq1d 2733 | . . . . 5 ⊢ (𝑐 = 𝑑 → (Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛)) |
| 10 | 9 | cbvrabv 3405 | . . . 4 ⊢ {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛} |
| 11 | eqeq2 2743 | . . . . 5 ⊢ (𝑛 = 𝑚 → (Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚)) | |
| 12 | 11 | rabbidv 3402 | . . . 4 ⊢ (𝑛 = 𝑚 → {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
| 13 | 10, 12 | eqtrid 2778 | . . 3 ⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
| 14 | 3, 13 | eqtrd 2766 | . 2 ⊢ (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
| 15 | 14 | cbvmptv 5193 | 1 ⊢ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {crab 3395 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 0cc0 11006 ℕ0cn0 12381 ...cfz 13407 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-xp 5620 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-iota 6437 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-seq 13909 df-sum 15594 |
| This theorem is referenced by: etransclem32 46374 etransclem33 46375 etransclem36 46378 etransclem37 46379 etransclem38 46380 etransclem40 46382 etransclem41 46383 etransclem42 46384 etransclem44 46386 etransclem45 46387 |
| Copyright terms: Public domain | W3C validator |