Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem11 Structured version   Visualization version   GIF version

Theorem etransclem11 46200
Description: A change of bound variable, often used in proofs for etransc 46238. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Assertion
Ref Expression
etransclem11 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
Distinct variable groups:   𝑀,𝑐,𝑑,𝑗,𝑘   𝑚,𝑀,𝑐,𝑑,𝑗   𝑛,𝑀,𝑐,𝑑,𝑘   𝑚,𝑛

Proof of Theorem etransclem11
StepHypRef Expression
1 oveq2 7438 . . . . 5 (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚))
21oveq1d 7445 . . . 4 (𝑛 = 𝑚 → ((0...𝑛) ↑m (0...𝑀)) = ((0...𝑚) ↑m (0...𝑀)))
32rabeqdv 3448 . . 3 (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
4 fveq2 6906 . . . . . . . 8 (𝑗 = 𝑘 → (𝑐𝑗) = (𝑐𝑘))
54cbvsumv 15728 . . . . . . 7 Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘)
6 fveq1 6905 . . . . . . . 8 (𝑐 = 𝑑 → (𝑐𝑘) = (𝑑𝑘))
76sumeq2sdv 15735 . . . . . . 7 (𝑐 = 𝑑 → Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = Σ𝑘 ∈ (0...𝑀)(𝑑𝑘))
85, 7eqtrid 2786 . . . . . 6 (𝑐 = 𝑑 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑑𝑘))
98eqeq1d 2736 . . . . 5 (𝑐 = 𝑑 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛))
109cbvrabv 3443 . . . 4 {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛}
11 eqeq2 2746 . . . . 5 (𝑛 = 𝑚 → (Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚))
1211rabbidv 3440 . . . 4 (𝑛 = 𝑚 → {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
1310, 12eqtrid 2786 . . 3 (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
143, 13eqtrd 2774 . 2 (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
1514cbvmptv 5260 1 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  {crab 3432  cmpt 5230  cfv 6562  (class class class)co 7430  m cmap 8864  0cc0 11152  0cn0 12523  ...cfz 13543  Σcsu 15718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-xp 5694  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-iota 6515  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-seq 14039  df-sum 15719
This theorem is referenced by:  etransclem32  46221  etransclem33  46222  etransclem36  46225  etransclem37  46226  etransclem38  46227  etransclem40  46229  etransclem41  46230  etransclem42  46231  etransclem44  46233  etransclem45  46234
  Copyright terms: Public domain W3C validator