Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem28 Structured version   Visualization version   GIF version

Theorem etransclem28 42554
Description: (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem28.p (𝜑𝑃 ∈ ℕ)
etransclem28.m (𝜑𝑀 ∈ ℕ0)
etransclem28.n (𝜑𝑁 ∈ ℕ0)
etransclem28.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem28.d (𝜑𝐷 ∈ (𝐶𝑁))
etransclem28.j (𝜑𝐽 ∈ (0...𝑀))
etransclem28.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))
Assertion
Ref Expression
etransclem28 (𝜑 → (!‘(𝑃 − 1)) ∥ 𝑇)
Distinct variable groups:   𝐷,𝑐,𝑗   𝑗,𝐽   𝑀,𝑐,𝑗,𝑛   𝑁,𝑐,𝑛   𝑃,𝑗   𝜑,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑗,𝑛,𝑐)   𝐷(𝑛)   𝑃(𝑛,𝑐)   𝑇(𝑗,𝑛,𝑐)   𝐽(𝑛,𝑐)   𝑁(𝑗)

Proof of Theorem etransclem28
StepHypRef Expression
1 etransclem28.p . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
2 nnm1nn0 11941 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
31, 2syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ ℕ0)
43faccld 13647 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
54nnzd 12089 . . . . . . . . 9 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
65adantr 483 . . . . . . . 8 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∈ ℤ)
7 etransclem28.d . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ (𝐶𝑁))
8 etransclem28.c . . . . . . . . . . . . . . . . 17 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
9 etransclem28.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
108, 9etransclem12 42538 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
117, 10eleqtrd 2917 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
12 fveq1 6671 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝐷 → (𝑐𝑗) = (𝐷𝑗))
1312sumeq2sdv 15063 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝐷 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
1413eqeq1d 2825 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝐷 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁 ↔ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
1514elrab 3682 . . . . . . . . . . . . . . . 16 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
1615simprbi 499 . . . . . . . . . . . . . . 15 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
1711, 16syl 17 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
1817eqcomd 2829 . . . . . . . . . . . . 13 (𝜑𝑁 = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
1918fveq2d 6676 . . . . . . . . . . . 12 (𝜑 → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)))
2019oveq1d 7173 . . . . . . . . . . 11 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))))
21 nfcv 2979 . . . . . . . . . . . 12 𝑗𝐷
22 fzfid 13344 . . . . . . . . . . . 12 (𝜑 → (0...𝑀) ∈ Fin)
23 nn0ex 11906 . . . . . . . . . . . . . . 15 0 ∈ V
24 fzssnn0 41592 . . . . . . . . . . . . . . . 16 (0...𝑁) ⊆ ℕ0
2524a1i 11 . . . . . . . . . . . . . . 15 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → (0...𝑁) ⊆ ℕ0)
26 mapss 8455 . . . . . . . . . . . . . . 15 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
2723, 25, 26sylancr 589 . . . . . . . . . . . . . 14 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
28 elrabi 3677 . . . . . . . . . . . . . 14 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)))
2927, 28sseldd 3970 . . . . . . . . . . . . 13 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝐷 ∈ (ℕ0m (0...𝑀)))
3011, 29syl 17 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (ℕ0m (0...𝑀)))
3121, 22, 30mccl 41886 . . . . . . . . . . 11 (𝜑 → ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
3220, 31eqeltrd 2915 . . . . . . . . . 10 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
3332nnzd 12089 . . . . . . . . 9 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ)
3433adantr 483 . . . . . . . 8 ((𝜑𝐽 = 0) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ)
35 oveq1 7165 . . . . . . . . . . . . . . . 16 (𝐽 = 0 → (𝐽𝑗) = (0 − 𝑗))
36 df-neg 10875 . . . . . . . . . . . . . . . 16 -𝑗 = (0 − 𝑗)
3735, 36syl6reqr 2877 . . . . . . . . . . . . . . 15 (𝐽 = 0 → -𝑗 = (𝐽𝑗))
3837oveq1d 7173 . . . . . . . . . . . . . 14 (𝐽 = 0 → (-𝑗↑(𝑃 − (𝐷𝑗))) = ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))
3938oveq2d 7174 . . . . . . . . . . . . 13 (𝐽 = 0 → (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))
4039ifeq2d 4488 . . . . . . . . . . . 12 (𝐽 = 0 → if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) = if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))
4140prodeq2ad 41880 . . . . . . . . . . 11 (𝐽 = 0 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))
4241adantl 484 . . . . . . . . . 10 ((𝜑𝐽 = 0) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))
4311, 28syl 17 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)))
44 elmapi 8430 . . . . . . . . . . . . 13 (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝑁))
4543, 44syl 17 . . . . . . . . . . . 12 (𝜑𝐷:(0...𝑀)⟶(0...𝑁))
46 etransclem28.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (0...𝑀))
471, 45, 46etransclem7 42533 . . . . . . . . . . 11 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4847adantr 483 . . . . . . . . . 10 ((𝜑𝐽 = 0) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4942, 48eqeltrd 2915 . . . . . . . . 9 ((𝜑𝐽 = 0) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
506, 49zmulcld 12096 . . . . . . . 8 ((𝜑𝐽 = 0) → ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ)
516, 34, 503jca 1124 . . . . . . 7 ((𝜑𝐽 = 0) → ((!‘(𝑃 − 1)) ∈ ℤ ∧ ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ ∧ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ))
52 dvdsmul1 15633 . . . . . . . 8 (((!‘(𝑃 − 1)) ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) ∈ ℤ) → (!‘(𝑃 − 1)) ∥ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))))
536, 49, 52syl2anc 586 . . . . . . 7 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∥ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))))
54 dvdsmultr2 15651 . . . . . . 7 (((!‘(𝑃 − 1)) ∈ ℤ ∧ ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ ∧ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))))))
5551, 53, 54sylc 65 . . . . . 6 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))))))
5655adantr 483 . . . . 5 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))))))
571ad2antrr 724 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝑃 ∈ ℕ)
58 etransclem28.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
5958ad2antrr 724 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝑀 ∈ ℕ0)
6045ad2antrr 724 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝐷:(0...𝑀)⟶(0...𝑁))
61 eqid 2823 . . . . . 6 (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))
62 simplr 767 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝐽 = 0)
63 simpr 487 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (𝐷‘0) = (𝑃 − 1))
6457, 59, 60, 61, 62, 63etransclem14 42540 . . . . 5 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))))))
6556, 64breqtrrd 5096 . . . 4 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
66 dvds0 15627 . . . . . . 7 ((!‘(𝑃 − 1)) ∈ ℤ → (!‘(𝑃 − 1)) ∥ 0)
675, 66syl 17 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∥ 0)
6867ad2antrr 724 . . . . 5 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ 0)
691ad2antrr 724 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝑃 ∈ ℕ)
7058ad2antrr 724 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝑀 ∈ ℕ0)
719ad2antrr 724 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝑁 ∈ ℕ0)
7245ad2antrr 724 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝐷:(0...𝑀)⟶(0...𝑁))
73 simplr 767 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝐽 = 0)
74 neqne 3026 . . . . . . 7 (¬ (𝐷‘0) = (𝑃 − 1) → (𝐷‘0) ≠ (𝑃 − 1))
7574adantl 484 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (𝐷‘0) ≠ (𝑃 − 1))
7669, 70, 71, 72, 61, 73, 75etransclem15 42541 . . . . 5 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) = 0)
7768, 76breqtrrd 5096 . . . 4 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
7865, 77pm2.61dan 811 . . 3 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
791nnzd 12089 . . . . . 6 (𝜑𝑃 ∈ ℤ)
80 elfznn0 13003 . . . . . . . . 9 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℕ0)
8146, 80syl 17 . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
8281nn0zd 12088 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
831, 58, 9, 82, 8, 7etransclem26 42552 . . . . . 6 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)
845, 79, 833jca 1124 . . . . 5 (𝜑 → ((!‘(𝑃 − 1)) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ))
8584adantr 483 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 0) → ((!‘(𝑃 − 1)) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ))
861nncnd 11656 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
87 1cnd 10638 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
8886, 87npcand 11003 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
8988eqcomd 2829 . . . . . . . 8 (𝜑𝑃 = ((𝑃 − 1) + 1))
9089fveq2d 6676 . . . . . . 7 (𝜑 → (!‘𝑃) = (!‘((𝑃 − 1) + 1)))
91 facp1 13641 . . . . . . . 8 ((𝑃 − 1) ∈ ℕ0 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
923, 91syl 17 . . . . . . 7 (𝜑 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
9388oveq2d 7174 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · 𝑃))
9490, 92, 933eqtrrd 2863 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) · 𝑃) = (!‘𝑃))
9594adantr 483 . . . . 5 ((𝜑 ∧ ¬ 𝐽 = 0) → ((!‘(𝑃 − 1)) · 𝑃) = (!‘𝑃))
961adantr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑃 ∈ ℕ)
9758adantr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℕ0)
989adantr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑁 ∈ ℕ0)
9945adantr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐷:(0...𝑀)⟶(0...𝑁))
10017adantr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
101 1zzd 12016 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ∈ ℤ)
10258nn0zd 12088 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
103102adantr 483 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℤ)
10482adantr 483 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℤ)
105101, 103, 1043jca 1124 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ))
10681adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℕ0)
107 neqne 3026 . . . . . . . . . . 11 𝐽 = 0 → 𝐽 ≠ 0)
108107adantl 484 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ≠ 0)
109 elnnne0 11914 . . . . . . . . . 10 (𝐽 ∈ ℕ ↔ (𝐽 ∈ ℕ0𝐽 ≠ 0))
110106, 108, 109sylanbrc 585 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℕ)
111110nnge1d 11688 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ≤ 𝐽)
112 elfzle2 12914 . . . . . . . . . 10 (𝐽 ∈ (0...𝑀) → 𝐽𝑀)
11346, 112syl 17 . . . . . . . . 9 (𝜑𝐽𝑀)
114113adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽𝑀)
115105, 111, 114jca32 518 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (1 ≤ 𝐽𝐽𝑀)))
116 elfz2 12902 . . . . . . 7 (𝐽 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (1 ≤ 𝐽𝐽𝑀)))
117115, 116sylibr 236 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ (1...𝑀))
11896, 97, 98, 99, 100, 61, 117etransclem25 42551 . . . . 5 ((𝜑 ∧ ¬ 𝐽 = 0) → (!‘𝑃) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
11995, 118eqbrtrd 5090 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 0) → ((!‘(𝑃 − 1)) · 𝑃) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
120 muldvds1 15636 . . . 4 (((!‘(𝑃 − 1)) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ) → (((!‘(𝑃 − 1)) · 𝑃) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))))
12185, 119, 120sylc 65 . . 3 ((𝜑 ∧ ¬ 𝐽 = 0) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
12278, 121pm2.61dan 811 . 2 (𝜑 → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
123 etransclem28.t . 2 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))
124122, 123breqtrrdi 5110 1 (𝜑 → (!‘(𝑃 − 1)) ∥ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  {crab 3144  Vcvv 3496  wss 3938  ifcif 4469   class class class wbr 5068  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872  -cneg 10873   / cdiv 11299  cn 11640  0cn0 11900  cz 11984  ...cfz 12895  cexp 13432  !cfa 13636  Σcsu 15044  cprod 15261  cdvds 15609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-prod 15262  df-dvds 15610
This theorem is referenced by:  etransclem37  42563  etransclem38  42564
  Copyright terms: Public domain W3C validator