Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem28 Structured version   Visualization version   GIF version

Theorem etransclem28 46370
Description: (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem28.p (𝜑𝑃 ∈ ℕ)
etransclem28.m (𝜑𝑀 ∈ ℕ0)
etransclem28.n (𝜑𝑁 ∈ ℕ0)
etransclem28.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem28.d (𝜑𝐷 ∈ (𝐶𝑁))
etransclem28.j (𝜑𝐽 ∈ (0...𝑀))
etransclem28.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))
Assertion
Ref Expression
etransclem28 (𝜑 → (!‘(𝑃 − 1)) ∥ 𝑇)
Distinct variable groups:   𝐷,𝑐,𝑗   𝑗,𝐽   𝑀,𝑐,𝑗,𝑛   𝑁,𝑐,𝑛   𝑃,𝑗   𝜑,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑗,𝑛,𝑐)   𝐷(𝑛)   𝑃(𝑛,𝑐)   𝑇(𝑗,𝑛,𝑐)   𝐽(𝑛,𝑐)   𝑁(𝑗)

Proof of Theorem etransclem28
StepHypRef Expression
1 etransclem28.p . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
2 nnm1nn0 12422 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
31, 2syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ ℕ0)
43faccld 14191 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
54nnzd 12495 . . . . . . . . 9 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
65adantr 480 . . . . . . . 8 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∈ ℤ)
7 etransclem28.d . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ (𝐶𝑁))
8 etransclem28.c . . . . . . . . . . . . . . . . 17 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
9 etransclem28.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
108, 9etransclem12 46354 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
117, 10eleqtrd 2833 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
12 fveq1 6821 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝐷 → (𝑐𝑗) = (𝐷𝑗))
1312sumeq2sdv 15610 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝐷 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
1413eqeq1d 2733 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝐷 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁 ↔ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
1514elrab 3642 . . . . . . . . . . . . . . . 16 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
1615simprbi 496 . . . . . . . . . . . . . . 15 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
1711, 16syl 17 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
1817eqcomd 2737 . . . . . . . . . . . . 13 (𝜑𝑁 = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
1918fveq2d 6826 . . . . . . . . . . . 12 (𝜑 → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)))
2019oveq1d 7361 . . . . . . . . . . 11 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))))
21 nfcv 2894 . . . . . . . . . . . 12 𝑗𝐷
22 fzfid 13880 . . . . . . . . . . . 12 (𝜑 → (0...𝑀) ∈ Fin)
23 nn0ex 12387 . . . . . . . . . . . . . . 15 0 ∈ V
24 fzssnn0 45427 . . . . . . . . . . . . . . . 16 (0...𝑁) ⊆ ℕ0
2524a1i 11 . . . . . . . . . . . . . . 15 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → (0...𝑁) ⊆ ℕ0)
26 mapss 8813 . . . . . . . . . . . . . . 15 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
2723, 25, 26sylancr 587 . . . . . . . . . . . . . 14 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
28 elrabi 3638 . . . . . . . . . . . . . 14 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)))
2927, 28sseldd 3930 . . . . . . . . . . . . 13 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝐷 ∈ (ℕ0m (0...𝑀)))
3011, 29syl 17 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (ℕ0m (0...𝑀)))
3121, 22, 30mccl 45708 . . . . . . . . . . 11 (𝜑 → ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
3220, 31eqeltrd 2831 . . . . . . . . . 10 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
3332nnzd 12495 . . . . . . . . 9 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ)
3433adantr 480 . . . . . . . 8 ((𝜑𝐽 = 0) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ)
35 df-neg 11347 . . . . . . . . . . . . . . . 16 -𝑗 = (0 − 𝑗)
36 oveq1 7353 . . . . . . . . . . . . . . . 16 (𝐽 = 0 → (𝐽𝑗) = (0 − 𝑗))
3735, 36eqtr4id 2785 . . . . . . . . . . . . . . 15 (𝐽 = 0 → -𝑗 = (𝐽𝑗))
3837oveq1d 7361 . . . . . . . . . . . . . 14 (𝐽 = 0 → (-𝑗↑(𝑃 − (𝐷𝑗))) = ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))
3938oveq2d 7362 . . . . . . . . . . . . 13 (𝐽 = 0 → (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))
4039ifeq2d 4493 . . . . . . . . . . . 12 (𝐽 = 0 → if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) = if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))
4140prodeq2ad 45702 . . . . . . . . . . 11 (𝐽 = 0 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))
4241adantl 481 . . . . . . . . . 10 ((𝜑𝐽 = 0) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))
4311, 28syl 17 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)))
44 elmapi 8773 . . . . . . . . . . . . 13 (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝑁))
4543, 44syl 17 . . . . . . . . . . . 12 (𝜑𝐷:(0...𝑀)⟶(0...𝑁))
46 etransclem28.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (0...𝑀))
471, 45, 46etransclem7 46349 . . . . . . . . . . 11 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4847adantr 480 . . . . . . . . . 10 ((𝜑𝐽 = 0) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4942, 48eqeltrd 2831 . . . . . . . . 9 ((𝜑𝐽 = 0) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
506, 49zmulcld 12583 . . . . . . . 8 ((𝜑𝐽 = 0) → ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ)
516, 34, 503jca 1128 . . . . . . 7 ((𝜑𝐽 = 0) → ((!‘(𝑃 − 1)) ∈ ℤ ∧ ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ ∧ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ))
52 dvdsmul1 16188 . . . . . . . 8 (((!‘(𝑃 − 1)) ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) ∈ ℤ) → (!‘(𝑃 − 1)) ∥ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))))
536, 49, 52syl2anc 584 . . . . . . 7 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∥ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))))
54 dvdsmultr2 16209 . . . . . . 7 (((!‘(𝑃 − 1)) ∈ ℤ ∧ ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ ∧ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))))))
5551, 53, 54sylc 65 . . . . . 6 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))))))
5655adantr 480 . . . . 5 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))))))
571ad2antrr 726 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝑃 ∈ ℕ)
58 etransclem28.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
5958ad2antrr 726 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝑀 ∈ ℕ0)
6045ad2antrr 726 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝐷:(0...𝑀)⟶(0...𝑁))
61 eqid 2731 . . . . . 6 (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))
62 simplr 768 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝐽 = 0)
63 simpr 484 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (𝐷‘0) = (𝑃 − 1))
6457, 59, 60, 61, 62, 63etransclem14 46356 . . . . 5 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))))))
6556, 64breqtrrd 5117 . . . 4 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
66 dvds0 16182 . . . . . . 7 ((!‘(𝑃 − 1)) ∈ ℤ → (!‘(𝑃 − 1)) ∥ 0)
675, 66syl 17 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∥ 0)
6867ad2antrr 726 . . . . 5 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ 0)
691ad2antrr 726 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝑃 ∈ ℕ)
7058ad2antrr 726 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝑀 ∈ ℕ0)
719ad2antrr 726 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝑁 ∈ ℕ0)
7245ad2antrr 726 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝐷:(0...𝑀)⟶(0...𝑁))
73 simplr 768 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝐽 = 0)
74 neqne 2936 . . . . . . 7 (¬ (𝐷‘0) = (𝑃 − 1) → (𝐷‘0) ≠ (𝑃 − 1))
7574adantl 481 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (𝐷‘0) ≠ (𝑃 − 1))
7669, 70, 71, 72, 61, 73, 75etransclem15 46357 . . . . 5 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) = 0)
7768, 76breqtrrd 5117 . . . 4 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
7865, 77pm2.61dan 812 . . 3 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
791nnzd 12495 . . . . . 6 (𝜑𝑃 ∈ ℤ)
80 elfznn0 13520 . . . . . . . . 9 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℕ0)
8146, 80syl 17 . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
8281nn0zd 12494 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
831, 58, 9, 82, 8, 7etransclem26 46368 . . . . . 6 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)
845, 79, 833jca 1128 . . . . 5 (𝜑 → ((!‘(𝑃 − 1)) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ))
8584adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 0) → ((!‘(𝑃 − 1)) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ))
861nncnd 12141 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
87 1cnd 11107 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
8886, 87npcand 11476 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
8988eqcomd 2737 . . . . . . . 8 (𝜑𝑃 = ((𝑃 − 1) + 1))
9089fveq2d 6826 . . . . . . 7 (𝜑 → (!‘𝑃) = (!‘((𝑃 − 1) + 1)))
91 facp1 14185 . . . . . . . 8 ((𝑃 − 1) ∈ ℕ0 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
923, 91syl 17 . . . . . . 7 (𝜑 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
9388oveq2d 7362 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · 𝑃))
9490, 92, 933eqtrrd 2771 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) · 𝑃) = (!‘𝑃))
9594adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐽 = 0) → ((!‘(𝑃 − 1)) · 𝑃) = (!‘𝑃))
961adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑃 ∈ ℕ)
9758adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℕ0)
989adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑁 ∈ ℕ0)
9945adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐷:(0...𝑀)⟶(0...𝑁))
10017adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
101 1zzd 12503 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ∈ ℤ)
10258nn0zd 12494 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
103102adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℤ)
10482adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℤ)
10581adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℕ0)
106 neqne 2936 . . . . . . . . . 10 𝐽 = 0 → 𝐽 ≠ 0)
107106adantl 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ≠ 0)
108 elnnne0 12395 . . . . . . . . 9 (𝐽 ∈ ℕ ↔ (𝐽 ∈ ℕ0𝐽 ≠ 0))
109105, 107, 108sylanbrc 583 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℕ)
110109nnge1d 12173 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ≤ 𝐽)
111 elfzle2 13428 . . . . . . . . 9 (𝐽 ∈ (0...𝑀) → 𝐽𝑀)
11246, 111syl 17 . . . . . . . 8 (𝜑𝐽𝑀)
113112adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽𝑀)
114101, 103, 104, 110, 113elfzd 13415 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ (1...𝑀))
11596, 97, 98, 99, 100, 61, 114etransclem25 46367 . . . . 5 ((𝜑 ∧ ¬ 𝐽 = 0) → (!‘𝑃) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
11695, 115eqbrtrd 5111 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 0) → ((!‘(𝑃 − 1)) · 𝑃) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
117 muldvds1 16191 . . . 4 (((!‘(𝑃 − 1)) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ) → (((!‘(𝑃 − 1)) · 𝑃) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))))
11885, 116, 117sylc 65 . . 3 ((𝜑 ∧ ¬ 𝐽 = 0) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
11978, 118pm2.61dan 812 . 2 (𝜑 → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
120 etransclem28.t . 2 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))
121119, 120breqtrrdi 5131 1 (𝜑 → (!‘(𝑃 − 1)) ∥ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  {crab 3395  Vcvv 3436  wss 3897  ifcif 4472   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  0cn0 12381  cz 12468  ...cfz 13407  cexp 13968  !cfa 14180  Σcsu 15593  cprod 15810  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-prod 15811  df-dvds 16164
This theorem is referenced by:  etransclem37  46379  etransclem38  46380
  Copyright terms: Public domain W3C validator