Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem28 Structured version   Visualization version   GIF version

Theorem etransclem28 44493
Description: (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem28.p (𝜑𝑃 ∈ ℕ)
etransclem28.m (𝜑𝑀 ∈ ℕ0)
etransclem28.n (𝜑𝑁 ∈ ℕ0)
etransclem28.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem28.d (𝜑𝐷 ∈ (𝐶𝑁))
etransclem28.j (𝜑𝐽 ∈ (0...𝑀))
etransclem28.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))
Assertion
Ref Expression
etransclem28 (𝜑 → (!‘(𝑃 − 1)) ∥ 𝑇)
Distinct variable groups:   𝐷,𝑐,𝑗   𝑗,𝐽   𝑀,𝑐,𝑗,𝑛   𝑁,𝑐,𝑛   𝑃,𝑗   𝜑,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑗,𝑛,𝑐)   𝐷(𝑛)   𝑃(𝑛,𝑐)   𝑇(𝑗,𝑛,𝑐)   𝐽(𝑛,𝑐)   𝑁(𝑗)

Proof of Theorem etransclem28
StepHypRef Expression
1 etransclem28.p . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
2 nnm1nn0 12454 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
31, 2syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ ℕ0)
43faccld 14184 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
54nnzd 12526 . . . . . . . . 9 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
65adantr 481 . . . . . . . 8 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∈ ℤ)
7 etransclem28.d . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ (𝐶𝑁))
8 etransclem28.c . . . . . . . . . . . . . . . . 17 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
9 etransclem28.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
108, 9etransclem12 44477 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
117, 10eleqtrd 2840 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
12 fveq1 6841 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝐷 → (𝑐𝑗) = (𝐷𝑗))
1312sumeq2sdv 15589 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝐷 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
1413eqeq1d 2738 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝐷 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁 ↔ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
1514elrab 3645 . . . . . . . . . . . . . . . 16 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
1615simprbi 497 . . . . . . . . . . . . . . 15 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
1711, 16syl 17 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
1817eqcomd 2742 . . . . . . . . . . . . 13 (𝜑𝑁 = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
1918fveq2d 6846 . . . . . . . . . . . 12 (𝜑 → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)))
2019oveq1d 7372 . . . . . . . . . . 11 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))))
21 nfcv 2907 . . . . . . . . . . . 12 𝑗𝐷
22 fzfid 13878 . . . . . . . . . . . 12 (𝜑 → (0...𝑀) ∈ Fin)
23 nn0ex 12419 . . . . . . . . . . . . . . 15 0 ∈ V
24 fzssnn0 43541 . . . . . . . . . . . . . . . 16 (0...𝑁) ⊆ ℕ0
2524a1i 11 . . . . . . . . . . . . . . 15 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → (0...𝑁) ⊆ ℕ0)
26 mapss 8827 . . . . . . . . . . . . . . 15 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
2723, 25, 26sylancr 587 . . . . . . . . . . . . . 14 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
28 elrabi 3639 . . . . . . . . . . . . . 14 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)))
2927, 28sseldd 3945 . . . . . . . . . . . . 13 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝐷 ∈ (ℕ0m (0...𝑀)))
3011, 29syl 17 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (ℕ0m (0...𝑀)))
3121, 22, 30mccl 43829 . . . . . . . . . . 11 (𝜑 → ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
3220, 31eqeltrd 2838 . . . . . . . . . 10 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
3332nnzd 12526 . . . . . . . . 9 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ)
3433adantr 481 . . . . . . . 8 ((𝜑𝐽 = 0) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ)
35 df-neg 11388 . . . . . . . . . . . . . . . 16 -𝑗 = (0 − 𝑗)
36 oveq1 7364 . . . . . . . . . . . . . . . 16 (𝐽 = 0 → (𝐽𝑗) = (0 − 𝑗))
3735, 36eqtr4id 2795 . . . . . . . . . . . . . . 15 (𝐽 = 0 → -𝑗 = (𝐽𝑗))
3837oveq1d 7372 . . . . . . . . . . . . . 14 (𝐽 = 0 → (-𝑗↑(𝑃 − (𝐷𝑗))) = ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))
3938oveq2d 7373 . . . . . . . . . . . . 13 (𝐽 = 0 → (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))
4039ifeq2d 4506 . . . . . . . . . . . 12 (𝐽 = 0 → if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) = if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))
4140prodeq2ad 43823 . . . . . . . . . . 11 (𝐽 = 0 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))
4241adantl 482 . . . . . . . . . 10 ((𝜑𝐽 = 0) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))
4311, 28syl 17 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)))
44 elmapi 8787 . . . . . . . . . . . . 13 (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝑁))
4543, 44syl 17 . . . . . . . . . . . 12 (𝜑𝐷:(0...𝑀)⟶(0...𝑁))
46 etransclem28.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (0...𝑀))
471, 45, 46etransclem7 44472 . . . . . . . . . . 11 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4847adantr 481 . . . . . . . . . 10 ((𝜑𝐽 = 0) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4942, 48eqeltrd 2838 . . . . . . . . 9 ((𝜑𝐽 = 0) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
506, 49zmulcld 12613 . . . . . . . 8 ((𝜑𝐽 = 0) → ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ)
516, 34, 503jca 1128 . . . . . . 7 ((𝜑𝐽 = 0) → ((!‘(𝑃 − 1)) ∈ ℤ ∧ ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ ∧ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ))
52 dvdsmul1 16160 . . . . . . . 8 (((!‘(𝑃 − 1)) ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) ∈ ℤ) → (!‘(𝑃 − 1)) ∥ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))))
536, 49, 52syl2anc 584 . . . . . . 7 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∥ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))))
54 dvdsmultr2 16180 . . . . . . 7 (((!‘(𝑃 − 1)) ∈ ℤ ∧ ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ ∧ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))))))
5551, 53, 54sylc 65 . . . . . 6 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))))))
5655adantr 481 . . . . 5 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))))))
571ad2antrr 724 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝑃 ∈ ℕ)
58 etransclem28.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
5958ad2antrr 724 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝑀 ∈ ℕ0)
6045ad2antrr 724 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝐷:(0...𝑀)⟶(0...𝑁))
61 eqid 2736 . . . . . 6 (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))
62 simplr 767 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝐽 = 0)
63 simpr 485 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (𝐷‘0) = (𝑃 − 1))
6457, 59, 60, 61, 62, 63etransclem14 44479 . . . . 5 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))))))
6556, 64breqtrrd 5133 . . . 4 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
66 dvds0 16154 . . . . . . 7 ((!‘(𝑃 − 1)) ∈ ℤ → (!‘(𝑃 − 1)) ∥ 0)
675, 66syl 17 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∥ 0)
6867ad2antrr 724 . . . . 5 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ 0)
691ad2antrr 724 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝑃 ∈ ℕ)
7058ad2antrr 724 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝑀 ∈ ℕ0)
719ad2antrr 724 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝑁 ∈ ℕ0)
7245ad2antrr 724 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝐷:(0...𝑀)⟶(0...𝑁))
73 simplr 767 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝐽 = 0)
74 neqne 2951 . . . . . . 7 (¬ (𝐷‘0) = (𝑃 − 1) → (𝐷‘0) ≠ (𝑃 − 1))
7574adantl 482 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (𝐷‘0) ≠ (𝑃 − 1))
7669, 70, 71, 72, 61, 73, 75etransclem15 44480 . . . . 5 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) = 0)
7768, 76breqtrrd 5133 . . . 4 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
7865, 77pm2.61dan 811 . . 3 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
791nnzd 12526 . . . . . 6 (𝜑𝑃 ∈ ℤ)
80 elfznn0 13534 . . . . . . . . 9 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℕ0)
8146, 80syl 17 . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
8281nn0zd 12525 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
831, 58, 9, 82, 8, 7etransclem26 44491 . . . . . 6 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)
845, 79, 833jca 1128 . . . . 5 (𝜑 → ((!‘(𝑃 − 1)) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ))
8584adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 0) → ((!‘(𝑃 − 1)) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ))
861nncnd 12169 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
87 1cnd 11150 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
8886, 87npcand 11516 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
8988eqcomd 2742 . . . . . . . 8 (𝜑𝑃 = ((𝑃 − 1) + 1))
9089fveq2d 6846 . . . . . . 7 (𝜑 → (!‘𝑃) = (!‘((𝑃 − 1) + 1)))
91 facp1 14178 . . . . . . . 8 ((𝑃 − 1) ∈ ℕ0 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
923, 91syl 17 . . . . . . 7 (𝜑 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
9388oveq2d 7373 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · 𝑃))
9490, 92, 933eqtrrd 2781 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) · 𝑃) = (!‘𝑃))
9594adantr 481 . . . . 5 ((𝜑 ∧ ¬ 𝐽 = 0) → ((!‘(𝑃 − 1)) · 𝑃) = (!‘𝑃))
961adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑃 ∈ ℕ)
9758adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℕ0)
989adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑁 ∈ ℕ0)
9945adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐷:(0...𝑀)⟶(0...𝑁))
10017adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
101 1zzd 12534 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ∈ ℤ)
10258nn0zd 12525 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
103102adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℤ)
10482adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℤ)
10581adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℕ0)
106 neqne 2951 . . . . . . . . . 10 𝐽 = 0 → 𝐽 ≠ 0)
107106adantl 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ≠ 0)
108 elnnne0 12427 . . . . . . . . 9 (𝐽 ∈ ℕ ↔ (𝐽 ∈ ℕ0𝐽 ≠ 0))
109105, 107, 108sylanbrc 583 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℕ)
110109nnge1d 12201 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ≤ 𝐽)
111 elfzle2 13445 . . . . . . . . 9 (𝐽 ∈ (0...𝑀) → 𝐽𝑀)
11246, 111syl 17 . . . . . . . 8 (𝜑𝐽𝑀)
113112adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽𝑀)
114101, 103, 104, 110, 113elfzd 13432 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ (1...𝑀))
11596, 97, 98, 99, 100, 61, 114etransclem25 44490 . . . . 5 ((𝜑 ∧ ¬ 𝐽 = 0) → (!‘𝑃) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
11695, 115eqbrtrd 5127 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 0) → ((!‘(𝑃 − 1)) · 𝑃) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
117 muldvds1 16163 . . . 4 (((!‘(𝑃 − 1)) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ) → (((!‘(𝑃 − 1)) · 𝑃) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))))
11885, 116, 117sylc 65 . . 3 ((𝜑 ∧ ¬ 𝐽 = 0) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
11978, 118pm2.61dan 811 . 2 (𝜑 → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
120 etransclem28.t . 2 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))
121119, 120breqtrrdi 5147 1 (𝜑 → (!‘(𝑃 − 1)) ∥ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  {crab 3407  Vcvv 3445  wss 3910  ifcif 4486   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  0cn0 12413  cz 12499  ...cfz 13424  cexp 13967  !cfa 14173  Σcsu 15570  cprod 15788  cdvds 16136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-prod 15789  df-dvds 16137
This theorem is referenced by:  etransclem37  44502  etransclem38  44503
  Copyright terms: Public domain W3C validator