Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem28 Structured version   Visualization version   GIF version

Theorem etransclem28 43803
Description: (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem28.p (𝜑𝑃 ∈ ℕ)
etransclem28.m (𝜑𝑀 ∈ ℕ0)
etransclem28.n (𝜑𝑁 ∈ ℕ0)
etransclem28.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem28.d (𝜑𝐷 ∈ (𝐶𝑁))
etransclem28.j (𝜑𝐽 ∈ (0...𝑀))
etransclem28.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))
Assertion
Ref Expression
etransclem28 (𝜑 → (!‘(𝑃 − 1)) ∥ 𝑇)
Distinct variable groups:   𝐷,𝑐,𝑗   𝑗,𝐽   𝑀,𝑐,𝑗,𝑛   𝑁,𝑐,𝑛   𝑃,𝑗   𝜑,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑗,𝑛,𝑐)   𝐷(𝑛)   𝑃(𝑛,𝑐)   𝑇(𝑗,𝑛,𝑐)   𝐽(𝑛,𝑐)   𝑁(𝑗)

Proof of Theorem etransclem28
StepHypRef Expression
1 etransclem28.p . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
2 nnm1nn0 12274 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
31, 2syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ ℕ0)
43faccld 13998 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
54nnzd 12425 . . . . . . . . 9 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
65adantr 481 . . . . . . . 8 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∈ ℤ)
7 etransclem28.d . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ (𝐶𝑁))
8 etransclem28.c . . . . . . . . . . . . . . . . 17 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
9 etransclem28.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
108, 9etransclem12 43787 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
117, 10eleqtrd 2841 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
12 fveq1 6773 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝐷 → (𝑐𝑗) = (𝐷𝑗))
1312sumeq2sdv 15416 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝐷 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
1413eqeq1d 2740 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝐷 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁 ↔ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
1514elrab 3624 . . . . . . . . . . . . . . . 16 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
1615simprbi 497 . . . . . . . . . . . . . . 15 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
1711, 16syl 17 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
1817eqcomd 2744 . . . . . . . . . . . . 13 (𝜑𝑁 = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
1918fveq2d 6778 . . . . . . . . . . . 12 (𝜑 → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)))
2019oveq1d 7290 . . . . . . . . . . 11 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))))
21 nfcv 2907 . . . . . . . . . . . 12 𝑗𝐷
22 fzfid 13693 . . . . . . . . . . . 12 (𝜑 → (0...𝑀) ∈ Fin)
23 nn0ex 12239 . . . . . . . . . . . . . . 15 0 ∈ V
24 fzssnn0 42856 . . . . . . . . . . . . . . . 16 (0...𝑁) ⊆ ℕ0
2524a1i 11 . . . . . . . . . . . . . . 15 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → (0...𝑁) ⊆ ℕ0)
26 mapss 8677 . . . . . . . . . . . . . . 15 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
2723, 25, 26sylancr 587 . . . . . . . . . . . . . 14 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
28 elrabi 3618 . . . . . . . . . . . . . 14 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)))
2927, 28sseldd 3922 . . . . . . . . . . . . 13 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝐷 ∈ (ℕ0m (0...𝑀)))
3011, 29syl 17 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (ℕ0m (0...𝑀)))
3121, 22, 30mccl 43139 . . . . . . . . . . 11 (𝜑 → ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
3220, 31eqeltrd 2839 . . . . . . . . . 10 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
3332nnzd 12425 . . . . . . . . 9 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ)
3433adantr 481 . . . . . . . 8 ((𝜑𝐽 = 0) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ)
35 df-neg 11208 . . . . . . . . . . . . . . . 16 -𝑗 = (0 − 𝑗)
36 oveq1 7282 . . . . . . . . . . . . . . . 16 (𝐽 = 0 → (𝐽𝑗) = (0 − 𝑗))
3735, 36eqtr4id 2797 . . . . . . . . . . . . . . 15 (𝐽 = 0 → -𝑗 = (𝐽𝑗))
3837oveq1d 7290 . . . . . . . . . . . . . 14 (𝐽 = 0 → (-𝑗↑(𝑃 − (𝐷𝑗))) = ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))
3938oveq2d 7291 . . . . . . . . . . . . 13 (𝐽 = 0 → (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))
4039ifeq2d 4479 . . . . . . . . . . . 12 (𝐽 = 0 → if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) = if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))
4140prodeq2ad 43133 . . . . . . . . . . 11 (𝐽 = 0 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))
4241adantl 482 . . . . . . . . . 10 ((𝜑𝐽 = 0) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))
4311, 28syl 17 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)))
44 elmapi 8637 . . . . . . . . . . . . 13 (𝐷 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝑁))
4543, 44syl 17 . . . . . . . . . . . 12 (𝜑𝐷:(0...𝑀)⟶(0...𝑁))
46 etransclem28.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (0...𝑀))
471, 45, 46etransclem7 43782 . . . . . . . . . . 11 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4847adantr 481 . . . . . . . . . 10 ((𝜑𝐽 = 0) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4942, 48eqeltrd 2839 . . . . . . . . 9 ((𝜑𝐽 = 0) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
506, 49zmulcld 12432 . . . . . . . 8 ((𝜑𝐽 = 0) → ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ)
516, 34, 503jca 1127 . . . . . . 7 ((𝜑𝐽 = 0) → ((!‘(𝑃 − 1)) ∈ ℤ ∧ ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ ∧ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ))
52 dvdsmul1 15987 . . . . . . . 8 (((!‘(𝑃 − 1)) ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) ∈ ℤ) → (!‘(𝑃 − 1)) ∥ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))))
536, 49, 52syl2anc 584 . . . . . . 7 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∥ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))))
54 dvdsmultr2 16007 . . . . . . 7 (((!‘(𝑃 − 1)) ∈ ℤ ∧ ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ ∧ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))))))
5551, 53, 54sylc 65 . . . . . 6 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))))))
5655adantr 481 . . . . 5 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))))))
571ad2antrr 723 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝑃 ∈ ℕ)
58 etransclem28.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
5958ad2antrr 723 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝑀 ∈ ℕ0)
6045ad2antrr 723 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝐷:(0...𝑀)⟶(0...𝑁))
61 eqid 2738 . . . . . 6 (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))
62 simplr 766 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝐽 = 0)
63 simpr 485 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (𝐷‘0) = (𝑃 − 1))
6457, 59, 60, 61, 62, 63etransclem14 43789 . . . . 5 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))))))
6556, 64breqtrrd 5102 . . . 4 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
66 dvds0 15981 . . . . . . 7 ((!‘(𝑃 − 1)) ∈ ℤ → (!‘(𝑃 − 1)) ∥ 0)
675, 66syl 17 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∥ 0)
6867ad2antrr 723 . . . . 5 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ 0)
691ad2antrr 723 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝑃 ∈ ℕ)
7058ad2antrr 723 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝑀 ∈ ℕ0)
719ad2antrr 723 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝑁 ∈ ℕ0)
7245ad2antrr 723 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝐷:(0...𝑀)⟶(0...𝑁))
73 simplr 766 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝐽 = 0)
74 neqne 2951 . . . . . . 7 (¬ (𝐷‘0) = (𝑃 − 1) → (𝐷‘0) ≠ (𝑃 − 1))
7574adantl 482 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (𝐷‘0) ≠ (𝑃 − 1))
7669, 70, 71, 72, 61, 73, 75etransclem15 43790 . . . . 5 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) = 0)
7768, 76breqtrrd 5102 . . . 4 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
7865, 77pm2.61dan 810 . . 3 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
791nnzd 12425 . . . . . 6 (𝜑𝑃 ∈ ℤ)
80 elfznn0 13349 . . . . . . . . 9 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℕ0)
8146, 80syl 17 . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
8281nn0zd 12424 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
831, 58, 9, 82, 8, 7etransclem26 43801 . . . . . 6 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)
845, 79, 833jca 1127 . . . . 5 (𝜑 → ((!‘(𝑃 − 1)) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ))
8584adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 0) → ((!‘(𝑃 − 1)) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ))
861nncnd 11989 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
87 1cnd 10970 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
8886, 87npcand 11336 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
8988eqcomd 2744 . . . . . . . 8 (𝜑𝑃 = ((𝑃 − 1) + 1))
9089fveq2d 6778 . . . . . . 7 (𝜑 → (!‘𝑃) = (!‘((𝑃 − 1) + 1)))
91 facp1 13992 . . . . . . . 8 ((𝑃 − 1) ∈ ℕ0 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
923, 91syl 17 . . . . . . 7 (𝜑 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
9388oveq2d 7291 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · 𝑃))
9490, 92, 933eqtrrd 2783 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) · 𝑃) = (!‘𝑃))
9594adantr 481 . . . . 5 ((𝜑 ∧ ¬ 𝐽 = 0) → ((!‘(𝑃 − 1)) · 𝑃) = (!‘𝑃))
961adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑃 ∈ ℕ)
9758adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℕ0)
989adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑁 ∈ ℕ0)
9945adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐷:(0...𝑀)⟶(0...𝑁))
10017adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
101 1zzd 12351 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ∈ ℤ)
10258nn0zd 12424 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
103102adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℤ)
10482adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℤ)
10581adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℕ0)
106 neqne 2951 . . . . . . . . . 10 𝐽 = 0 → 𝐽 ≠ 0)
107106adantl 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ≠ 0)
108 elnnne0 12247 . . . . . . . . 9 (𝐽 ∈ ℕ ↔ (𝐽 ∈ ℕ0𝐽 ≠ 0))
109105, 107, 108sylanbrc 583 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℕ)
110109nnge1d 12021 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ≤ 𝐽)
111 elfzle2 13260 . . . . . . . . 9 (𝐽 ∈ (0...𝑀) → 𝐽𝑀)
11246, 111syl 17 . . . . . . . 8 (𝜑𝐽𝑀)
113112adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽𝑀)
114101, 103, 104, 110, 113elfzd 13247 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ (1...𝑀))
11596, 97, 98, 99, 100, 61, 114etransclem25 43800 . . . . 5 ((𝜑 ∧ ¬ 𝐽 = 0) → (!‘𝑃) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
11695, 115eqbrtrd 5096 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 0) → ((!‘(𝑃 − 1)) · 𝑃) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
117 muldvds1 15990 . . . 4 (((!‘(𝑃 − 1)) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ) → (((!‘(𝑃 − 1)) · 𝑃) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))))
11885, 116, 117sylc 65 . . 3 ((𝜑 ∧ ¬ 𝐽 = 0) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
11978, 118pm2.61dan 810 . 2 (𝜑 → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
120 etransclem28.t . 2 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))
121119, 120breqtrrdi 5116 1 (𝜑 → (!‘(𝑃 − 1)) ∥ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  ...cfz 13239  cexp 13782  !cfa 13987  Σcsu 15397  cprod 15615  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-prod 15616  df-dvds 15964
This theorem is referenced by:  etransclem37  43812  etransclem38  43813
  Copyright terms: Public domain W3C validator