Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem37 Structured version   Visualization version   GIF version

Theorem etransclem37 43487
Description: (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem37.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem37.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem37.p (𝜑𝑃 ∈ ℕ)
etransclem37.m (𝜑𝑀 ∈ ℕ0)
etransclem37.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem37.n (𝜑𝑁 ∈ ℕ0)
etransclem37.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem37.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem37.9 (𝜑𝐽 ∈ (0...𝑀))
etransclem37.j (𝜑𝐽𝑋)
Assertion
Ref Expression
etransclem37 (𝜑 → (!‘(𝑃 − 1)) ∥ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑥   𝐻,𝑐,𝑗,𝑛,𝑥   𝐽,𝑐,𝑗,𝑥   𝑀,𝑐,𝑗,𝑛,𝑥   𝑁,𝑐,𝑗,𝑛,𝑥   𝑃,𝑐,𝑗,𝑥   𝑆,𝑐,𝑗,𝑛,𝑥   𝑗,𝑋,𝑛,𝑥   𝜑,𝑐,𝑗,𝑛,𝑥
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛)   𝐹(𝑥,𝑗,𝑛,𝑐)   𝐽(𝑛)   𝑋(𝑐)

Proof of Theorem etransclem37
Dummy variables 𝑘 𝑚 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem37.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
2 etransclem37.n . . . 4 (𝜑𝑁 ∈ ℕ0)
31, 2etransclem16 43466 . . 3 (𝜑 → (𝐶𝑁) ∈ Fin)
4 etransclem37.p . . . . . 6 (𝜑𝑃 ∈ ℕ)
5 nnm1nn0 12131 . . . . . 6 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
64, 5syl 17 . . . . 5 (𝜑 → (𝑃 − 1) ∈ ℕ0)
76faccld 13850 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
87nnzd 12281 . . 3 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
91, 2etransclem12 43462 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
109eleq2d 2823 . . . . . . . . . . 11 (𝜑 → (𝑐 ∈ (𝐶𝑁) ↔ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}))
1110biimpa 480 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
12 rabid 3290 . . . . . . . . . . . 12 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
1312biimpi 219 . . . . . . . . . . 11 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
1413simprd 499 . . . . . . . . . 10 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁)
1511, 14syl 17 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐶𝑁)) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁)
1615eqcomd 2743 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑁 = Σ𝑗 ∈ (0...𝑀)(𝑐𝑗))
1716fveq2d 6721 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)))
1817oveq1d 7228 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))))
19 nfcv 2904 . . . . . . 7 𝑗𝑐
20 fzfid 13546 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (0...𝑀) ∈ Fin)
21 nn0ex 12096 . . . . . . . . . . 11 0 ∈ V
2221a1i 11 . . . . . . . . . 10 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → ℕ0 ∈ V)
23 fzssnn0 42529 . . . . . . . . . 10 (0...𝑁) ⊆ ℕ0
24 mapss 8570 . . . . . . . . . 10 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
2522, 23, 24sylancl 589 . . . . . . . . 9 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
2613simpld 498 . . . . . . . . 9 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)))
2725, 26sseldd 3902 . . . . . . . 8 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐 ∈ (ℕ0m (0...𝑀)))
2811, 27syl 17 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (ℕ0m (0...𝑀)))
2919, 20, 28mccl 42814 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℕ)
3018, 29eqeltrd 2838 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℕ)
3130nnzd 12281 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℤ)
324adantr 484 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑃 ∈ ℕ)
33 etransclem37.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
3433adantr 484 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑀 ∈ ℕ0)
35 elmapi 8530 . . . . . . 7 (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
3611, 26, 353syl 18 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁))
37 etransclem37.9 . . . . . . . 8 (𝜑𝐽 ∈ (0...𝑀))
3837elfzelzd 13113 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
3938adantr 484 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝐽 ∈ ℤ)
4032, 34, 36, 39etransclem10 43460 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) ∈ ℤ)
41 fzfid 13546 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → (1...𝑀) ∈ Fin)
4232adantr 484 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ)
4336adantr 484 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
44 0z 12187 . . . . . . . . . . 11 0 ∈ ℤ
45 fzp1ss 13163 . . . . . . . . . . 11 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
4644, 45ax-mp 5 . . . . . . . . . 10 ((0 + 1)...𝑀) ⊆ (0...𝑀)
4746sseli 3896 . . . . . . . . 9 (𝑗 ∈ ((0 + 1)...𝑀) → 𝑗 ∈ (0...𝑀))
48 1e0p1 12335 . . . . . . . . . 10 1 = (0 + 1)
4948oveq1i 7223 . . . . . . . . 9 (1...𝑀) = ((0 + 1)...𝑀)
5047, 49eleq2s 2856 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
5150adantl 485 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
5239adantr 484 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
5342, 43, 51, 52etransclem3 43453 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
5441, 53fprodzcl 15516 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
5540, 54zmulcld 12288 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))))) ∈ ℤ)
5631, 55zmulcld 12288 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ)
572adantr 484 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑁 ∈ ℕ0)
58 etransclem11 43461 . . . . 5 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
591, 58eqtri 2765 . . . 4 𝐶 = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
60 simpr 488 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (𝐶𝑁))
6137adantr 484 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝐽 ∈ (0...𝑀))
62 fveq2 6717 . . . . . . . 8 (𝑗 = 𝑘 → (𝑐𝑗) = (𝑐𝑘))
6362fveq2d 6721 . . . . . . 7 (𝑗 = 𝑘 → (!‘(𝑐𝑗)) = (!‘(𝑐𝑘)))
6463cbvprodv 15478 . . . . . 6 𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) = ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))
6564oveq2i 7224 . . . . 5 ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) = ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)))
6662breq2d 5065 . . . . . . . 8 (𝑗 = 𝑘 → (𝑃 < (𝑐𝑗) ↔ 𝑃 < (𝑐𝑘)))
6762oveq2d 7229 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝑃 − (𝑐𝑗)) = (𝑃 − (𝑐𝑘)))
6867fveq2d 6721 . . . . . . . . . 10 (𝑗 = 𝑘 → (!‘(𝑃 − (𝑐𝑗))) = (!‘(𝑃 − (𝑐𝑘))))
6968oveq2d 7229 . . . . . . . . 9 (𝑗 = 𝑘 → ((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))))
70 oveq2 7221 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝐽𝑗) = (𝐽𝑘))
7170, 67oveq12d 7231 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))) = ((𝐽𝑘)↑(𝑃 − (𝑐𝑘))))
7269, 71oveq12d 7231 . . . . . . . 8 (𝑗 = 𝑘 → (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘)))))
7366, 72ifbieq2d 4465 . . . . . . 7 (𝑗 = 𝑘 → if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) = if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘))))))
7473cbvprodv 15478 . . . . . 6 𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) = ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘)))))
7574oveq2i 7224 . . . . 5 (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘))))))
7665, 75oveq12i 7225 . . . 4 (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) = (((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘)))))))
7732, 34, 57, 59, 60, 61, 76etransclem28 43478 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
783, 8, 56, 77fsumdvds 15869 . 2 (𝜑 → (!‘(𝑃 − 1)) ∥ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
79 etransclem37.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
80 etransclem37.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
81 etransclem37.f . . 3 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
82 etransclem37.h . . 3 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
83 etransclem37.j . . 3 (𝜑𝐽𝑋)
8479, 80, 4, 33, 81, 2, 82, 1, 83etransclem31 43481 . 2 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
8578, 84breqtrrd 5081 1 (𝜑 → (!‘(𝑃 − 1)) ∥ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  {crab 3065  Vcvv 3408  wss 3866  ifcif 4439  {cpr 4543   class class class wbr 5053  cmpt 5135  wf 6376  cfv 6380  (class class class)co 7213  m cmap 8508  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734   < clt 10867  cmin 11062   / cdiv 11489  cn 11830  0cn0 12090  cz 12176  ...cfz 13095  cexp 13635  !cfa 13839  Σcsu 15249  cprod 15467  cdvds 15815  t crest 16925  TopOpenctopn 16926  fldccnfld 20363   D𝑛 cdvn 24761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-prod 15468  df-dvds 15816  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-dvn 24765
This theorem is referenced by:  etransclem44  43494  etransclem45  43495
  Copyright terms: Public domain W3C validator