Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem37 Structured version   Visualization version   GIF version

Theorem etransclem37 43812
Description: (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem37.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem37.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem37.p (𝜑𝑃 ∈ ℕ)
etransclem37.m (𝜑𝑀 ∈ ℕ0)
etransclem37.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem37.n (𝜑𝑁 ∈ ℕ0)
etransclem37.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem37.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem37.9 (𝜑𝐽 ∈ (0...𝑀))
etransclem37.j (𝜑𝐽𝑋)
Assertion
Ref Expression
etransclem37 (𝜑 → (!‘(𝑃 − 1)) ∥ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑥   𝐻,𝑐,𝑗,𝑛,𝑥   𝐽,𝑐,𝑗,𝑥   𝑀,𝑐,𝑗,𝑛,𝑥   𝑁,𝑐,𝑗,𝑛,𝑥   𝑃,𝑐,𝑗,𝑥   𝑆,𝑐,𝑗,𝑛,𝑥   𝑗,𝑋,𝑛,𝑥   𝜑,𝑐,𝑗,𝑛,𝑥
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛)   𝐹(𝑥,𝑗,𝑛,𝑐)   𝐽(𝑛)   𝑋(𝑐)

Proof of Theorem etransclem37
Dummy variables 𝑘 𝑚 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem37.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
2 etransclem37.n . . . 4 (𝜑𝑁 ∈ ℕ0)
31, 2etransclem16 43791 . . 3 (𝜑 → (𝐶𝑁) ∈ Fin)
4 etransclem37.p . . . . . 6 (𝜑𝑃 ∈ ℕ)
5 nnm1nn0 12274 . . . . . 6 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
64, 5syl 17 . . . . 5 (𝜑 → (𝑃 − 1) ∈ ℕ0)
76faccld 13998 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
87nnzd 12425 . . 3 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
91, 2etransclem12 43787 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
109eleq2d 2824 . . . . . . . . . . 11 (𝜑 → (𝑐 ∈ (𝐶𝑁) ↔ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}))
1110biimpa 477 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
12 rabid 3310 . . . . . . . . . . . 12 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
1312biimpi 215 . . . . . . . . . . 11 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
1413simprd 496 . . . . . . . . . 10 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁)
1511, 14syl 17 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐶𝑁)) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁)
1615eqcomd 2744 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑁 = Σ𝑗 ∈ (0...𝑀)(𝑐𝑗))
1716fveq2d 6778 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)))
1817oveq1d 7290 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))))
19 nfcv 2907 . . . . . . 7 𝑗𝑐
20 fzfid 13693 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (0...𝑀) ∈ Fin)
21 nn0ex 12239 . . . . . . . . . . 11 0 ∈ V
2221a1i 11 . . . . . . . . . 10 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → ℕ0 ∈ V)
23 fzssnn0 42856 . . . . . . . . . 10 (0...𝑁) ⊆ ℕ0
24 mapss 8677 . . . . . . . . . 10 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
2522, 23, 24sylancl 586 . . . . . . . . 9 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
2613simpld 495 . . . . . . . . 9 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)))
2725, 26sseldd 3922 . . . . . . . 8 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐 ∈ (ℕ0m (0...𝑀)))
2811, 27syl 17 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (ℕ0m (0...𝑀)))
2919, 20, 28mccl 43139 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℕ)
3018, 29eqeltrd 2839 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℕ)
3130nnzd 12425 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℤ)
324adantr 481 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑃 ∈ ℕ)
33 etransclem37.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
3433adantr 481 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑀 ∈ ℕ0)
35 elmapi 8637 . . . . . . 7 (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
3611, 26, 353syl 18 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁))
37 etransclem37.9 . . . . . . . 8 (𝜑𝐽 ∈ (0...𝑀))
3837elfzelzd 13257 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
3938adantr 481 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝐽 ∈ ℤ)
4032, 34, 36, 39etransclem10 43785 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) ∈ ℤ)
41 fzfid 13693 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → (1...𝑀) ∈ Fin)
4232adantr 481 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ)
4336adantr 481 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
44 0z 12330 . . . . . . . . . . 11 0 ∈ ℤ
45 fzp1ss 13307 . . . . . . . . . . 11 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
4644, 45ax-mp 5 . . . . . . . . . 10 ((0 + 1)...𝑀) ⊆ (0...𝑀)
4746sseli 3917 . . . . . . . . 9 (𝑗 ∈ ((0 + 1)...𝑀) → 𝑗 ∈ (0...𝑀))
48 1e0p1 12479 . . . . . . . . . 10 1 = (0 + 1)
4948oveq1i 7285 . . . . . . . . 9 (1...𝑀) = ((0 + 1)...𝑀)
5047, 49eleq2s 2857 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
5150adantl 482 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
5239adantr 481 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
5342, 43, 51, 52etransclem3 43778 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
5441, 53fprodzcl 15664 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
5540, 54zmulcld 12432 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))))) ∈ ℤ)
5631, 55zmulcld 12432 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ)
572adantr 481 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑁 ∈ ℕ0)
58 etransclem11 43786 . . . . 5 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
591, 58eqtri 2766 . . . 4 𝐶 = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
60 simpr 485 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (𝐶𝑁))
6137adantr 481 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝐽 ∈ (0...𝑀))
62 fveq2 6774 . . . . . . . 8 (𝑗 = 𝑘 → (𝑐𝑗) = (𝑐𝑘))
6362fveq2d 6778 . . . . . . 7 (𝑗 = 𝑘 → (!‘(𝑐𝑗)) = (!‘(𝑐𝑘)))
6463cbvprodv 15626 . . . . . 6 𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) = ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))
6564oveq2i 7286 . . . . 5 ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) = ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)))
6662breq2d 5086 . . . . . . . 8 (𝑗 = 𝑘 → (𝑃 < (𝑐𝑗) ↔ 𝑃 < (𝑐𝑘)))
6762oveq2d 7291 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝑃 − (𝑐𝑗)) = (𝑃 − (𝑐𝑘)))
6867fveq2d 6778 . . . . . . . . . 10 (𝑗 = 𝑘 → (!‘(𝑃 − (𝑐𝑗))) = (!‘(𝑃 − (𝑐𝑘))))
6968oveq2d 7291 . . . . . . . . 9 (𝑗 = 𝑘 → ((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))))
70 oveq2 7283 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝐽𝑗) = (𝐽𝑘))
7170, 67oveq12d 7293 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))) = ((𝐽𝑘)↑(𝑃 − (𝑐𝑘))))
7269, 71oveq12d 7293 . . . . . . . 8 (𝑗 = 𝑘 → (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘)))))
7366, 72ifbieq2d 4485 . . . . . . 7 (𝑗 = 𝑘 → if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) = if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘))))))
7473cbvprodv 15626 . . . . . 6 𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) = ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘)))))
7574oveq2i 7286 . . . . 5 (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘))))))
7665, 75oveq12i 7287 . . . 4 (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) = (((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘)))))))
7732, 34, 57, 59, 60, 61, 76etransclem28 43803 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
783, 8, 56, 77fsumdvds 16017 . 2 (𝜑 → (!‘(𝑃 − 1)) ∥ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
79 etransclem37.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
80 etransclem37.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
81 etransclem37.f . . 3 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
82 etransclem37.h . . 3 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
83 etransclem37.j . . 3 (𝜑𝐽𝑋)
8479, 80, 4, 33, 81, 2, 82, 1, 83etransclem31 43806 . 2 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
8578, 84breqtrrd 5102 1 (𝜑 → (!‘(𝑃 − 1)) ∥ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  wss 3887  ifcif 4459  {cpr 4563   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  ...cfz 13239  cexp 13782  !cfa 13987  Σcsu 15397  cprod 15615  cdvds 15963  t crest 17131  TopOpenctopn 17132  fldccnfld 20597   D𝑛 cdvn 25028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-prod 15616  df-dvds 15964  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-dvn 25032
This theorem is referenced by:  etransclem44  43819  etransclem45  43820
  Copyright terms: Public domain W3C validator