| Step | Hyp | Ref
| Expression |
| 1 | | etransclem37.c |
. . . 4
⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
| 2 | | etransclem37.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 3 | 1, 2 | etransclem16 46265 |
. . 3
⊢ (𝜑 → (𝐶‘𝑁) ∈ Fin) |
| 4 | | etransclem37.p |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 5 | | nnm1nn0 12567 |
. . . . . 6
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
| 6 | 4, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑃 − 1) ∈
ℕ0) |
| 7 | 6 | faccld 14323 |
. . . 4
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℕ) |
| 8 | 7 | nnzd 12640 |
. . 3
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℤ) |
| 9 | 1, 2 | etransclem12 46261 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
| 10 | 9 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑐 ∈ (𝐶‘𝑁) ↔ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁})) |
| 11 | 10 | biimpa 476 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
| 12 | | rabid 3458 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} ↔ (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁)) |
| 13 | 12 | biimpi 216 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} → (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁)) |
| 14 | 13 | simprd 495 |
. . . . . . . . . 10
⊢ (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} → Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁) |
| 15 | 11, 14 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁) |
| 16 | 15 | eqcomd 2743 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑁 = Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗)) |
| 17 | 16 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗))) |
| 18 | 17 | oveq1d 7446 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗)))) |
| 19 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑗𝑐 |
| 20 | | fzfid 14014 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (0...𝑀) ∈ Fin) |
| 21 | | nn0ex 12532 |
. . . . . . . . . . 11
⊢
ℕ0 ∈ V |
| 22 | 21 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} → ℕ0 ∈
V) |
| 23 | | fzssnn0 45329 |
. . . . . . . . . 10
⊢
(0...𝑁) ⊆
ℕ0 |
| 24 | | mapss 8929 |
. . . . . . . . . 10
⊢
((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) →
((0...𝑁) ↑m
(0...𝑀)) ⊆
(ℕ0 ↑m (0...𝑀))) |
| 25 | 22, 23, 24 | sylancl 586 |
. . . . . . . . 9
⊢ (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} → ((0...𝑁) ↑m (0...𝑀)) ⊆ (ℕ0
↑m (0...𝑀))) |
| 26 | 13 | simpld 494 |
. . . . . . . . 9
⊢ (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀))) |
| 27 | 25, 26 | sseldd 3984 |
. . . . . . . 8
⊢ (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} → 𝑐 ∈ (ℕ0
↑m (0...𝑀))) |
| 28 | 11, 27 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ (ℕ0
↑m (0...𝑀))) |
| 29 | 19, 20, 28 | mccl 45613 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) ∈ ℕ) |
| 30 | 18, 29 | eqeltrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) ∈ ℕ) |
| 31 | 30 | nnzd 12640 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) ∈ ℤ) |
| 32 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑃 ∈ ℕ) |
| 33 | | etransclem37.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 34 | 33 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑀 ∈
ℕ0) |
| 35 | | elmapi 8889 |
. . . . . . 7
⊢ (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁)) |
| 36 | 11, 26, 35 | 3syl 18 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁)) |
| 37 | | etransclem37.9 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
| 38 | 37 | elfzelzd 13565 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 39 | 38 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝐽 ∈ ℤ) |
| 40 | 32, 34, 36, 39 | etransclem10 46259 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) ∈
ℤ) |
| 41 | | fzfid 14014 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (1...𝑀) ∈ Fin) |
| 42 | 32 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ) |
| 43 | 36 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁)) |
| 44 | | 0z 12624 |
. . . . . . . . . . 11
⊢ 0 ∈
ℤ |
| 45 | | fzp1ss 13615 |
. . . . . . . . . . 11
⊢ (0 ∈
ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀)) |
| 46 | 44, 45 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((0 +
1)...𝑀) ⊆ (0...𝑀) |
| 47 | 46 | sseli 3979 |
. . . . . . . . 9
⊢ (𝑗 ∈ ((0 + 1)...𝑀) → 𝑗 ∈ (0...𝑀)) |
| 48 | | 1e0p1 12775 |
. . . . . . . . . 10
⊢ 1 = (0 +
1) |
| 49 | 48 | oveq1i 7441 |
. . . . . . . . 9
⊢
(1...𝑀) = ((0 +
1)...𝑀) |
| 50 | 47, 49 | eleq2s 2859 |
. . . . . . . 8
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀)) |
| 51 | 50 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀)) |
| 52 | 39 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ) |
| 53 | 42, 43, 51, 52 | etransclem3 46252 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) ∈ ℤ) |
| 54 | 41, 53 | fprodzcl 15990 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) ∈ ℤ) |
| 55 | 40, 54 | zmulcld 12728 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))) ∈ ℤ) |
| 56 | 31, 55 | zmulcld 12728 |
. . 3
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) ∈ ℤ) |
| 57 | 2 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑁 ∈
ℕ0) |
| 58 | | etransclem11 46260 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛) ↑m
(0...𝑀)) ∣
Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
| 59 | 1, 58 | eqtri 2765 |
. . . 4
⊢ 𝐶 = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) |
| 60 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝑐 ∈ (𝐶‘𝑁)) |
| 61 | 37 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → 𝐽 ∈ (0...𝑀)) |
| 62 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (𝑐‘𝑗) = (𝑐‘𝑘)) |
| 63 | 62 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (!‘(𝑐‘𝑗)) = (!‘(𝑐‘𝑘))) |
| 64 | 63 | cbvprodv 15950 |
. . . . . 6
⊢
∏𝑗 ∈
(0...𝑀)(!‘(𝑐‘𝑗)) = ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘)) |
| 65 | 64 | oveq2i 7442 |
. . . . 5
⊢
((!‘𝑁) /
∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) = ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘))) |
| 66 | 62 | breq2d 5155 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (𝑃 < (𝑐‘𝑗) ↔ 𝑃 < (𝑐‘𝑘))) |
| 67 | 62 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → (𝑃 − (𝑐‘𝑗)) = (𝑃 − (𝑐‘𝑘))) |
| 68 | 67 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (!‘(𝑃 − (𝑐‘𝑗))) = (!‘(𝑃 − (𝑐‘𝑘)))) |
| 69 | 68 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑘))))) |
| 70 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝐽 − 𝑗) = (𝐽 − 𝑘)) |
| 71 | 70, 67 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗))) = ((𝐽 − 𝑘)↑(𝑃 − (𝑐‘𝑘)))) |
| 72 | 69, 71 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝑐‘𝑘))))) |
| 73 | 66, 72 | ifbieq2d 4552 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) = if(𝑃 < (𝑐‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝑐‘𝑘)))))) |
| 74 | 73 | cbvprodv 15950 |
. . . . . 6
⊢
∏𝑗 ∈
(1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) = ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝑐‘𝑘))))) |
| 75 | 74 | oveq2i 7442 |
. . . . 5
⊢
(if((𝑃 − 1)
< (𝑐‘0), 0,
(((!‘(𝑃 − 1)) /
(!‘((𝑃 − 1)
− (𝑐‘0))))
· (𝐽↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝑐‘𝑘)))))) |
| 76 | 65, 75 | oveq12i 7443 |
. . . 4
⊢
(((!‘𝑁) /
∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) = (((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐‘𝑘))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑘)))) · ((𝐽 − 𝑘)↑(𝑃 − (𝑐‘𝑘))))))) |
| 77 | 32, 34, 57, 59, 60, 61, 76 | etransclem28 46277 |
. . 3
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘𝑁)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))))) |
| 78 | 3, 8, 56, 77 | fsumdvds 16345 |
. 2
⊢ (𝜑 → (!‘(𝑃 − 1)) ∥
Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))))) |
| 79 | | etransclem37.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| 80 | | etransclem37.x |
. . 3
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
| 81 | | etransclem37.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) |
| 82 | | etransclem37.h |
. . 3
⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
| 83 | | etransclem37.j |
. . 3
⊢ (𝜑 → 𝐽 ∈ 𝑋) |
| 84 | 79, 80, 4, 33, 81, 2, 82, 1, 83 | etransclem31 46280 |
. 2
⊢ (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))))) |
| 85 | 78, 84 | breqtrrd 5171 |
1
⊢ (𝜑 → (!‘(𝑃 − 1)) ∥ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽)) |