Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem16 | Structured version Visualization version GIF version |
Description: Every element in the range of 𝐶 is a finite set. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem16.c | ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
etransclem16.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
etransclem16 | ⊢ (𝜑 → (𝐶‘𝑁) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem16.c | . . 3 ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) | |
2 | etransclem16.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | etransclem12 43321 | . 2 ⊢ (𝜑 → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
4 | fzfi 13432 | . . . 4 ⊢ (0...𝑁) ∈ Fin | |
5 | fzfi 13432 | . . . 4 ⊢ (0...𝑀) ∈ Fin | |
6 | mapfi 8894 | . . . 4 ⊢ (((0...𝑁) ∈ Fin ∧ (0...𝑀) ∈ Fin) → ((0...𝑁) ↑m (0...𝑀)) ∈ Fin) | |
7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ ((0...𝑁) ↑m (0...𝑀)) ∈ Fin |
8 | ssrab2 3970 | . . 3 ⊢ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} ⊆ ((0...𝑁) ↑m (0...𝑀)) | |
9 | ssfi 8773 | . . 3 ⊢ ((((0...𝑁) ↑m (0...𝑀)) ∈ Fin ∧ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} ⊆ ((0...𝑁) ↑m (0...𝑀))) → {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} ∈ Fin) | |
10 | 7, 8, 9 | mp2an 692 | . 2 ⊢ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} ∈ Fin |
11 | 3, 10 | eqeltrdi 2841 | 1 ⊢ (𝜑 → (𝐶‘𝑁) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2113 {crab 3057 ⊆ wss 3844 ↦ cmpt 5111 ‘cfv 6340 (class class class)co 7171 ↑m cmap 8438 Fincfn 8556 0cc0 10616 ℕ0cn0 11977 ...cfz 12982 Σcsu 15136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 ax-cnex 10672 ax-resscn 10673 ax-1cn 10674 ax-icn 10675 ax-addcl 10676 ax-addrcl 10677 ax-mulcl 10678 ax-mulrcl 10679 ax-mulcom 10680 ax-addass 10681 ax-mulass 10682 ax-distr 10683 ax-i2m1 10684 ax-1ne0 10685 ax-1rid 10686 ax-rnegex 10687 ax-rrecex 10688 ax-cnre 10689 ax-pre-lttri 10690 ax-pre-lttrn 10691 ax-pre-ltadd 10692 ax-pre-mulgt0 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7128 df-ov 7174 df-oprab 7175 df-mpo 7176 df-om 7601 df-1st 7715 df-2nd 7716 df-wrecs 7977 df-recs 8038 df-rdg 8076 df-1o 8132 df-er 8321 df-map 8440 df-pm 8441 df-en 8557 df-dom 8558 df-sdom 8559 df-fin 8560 df-pnf 10756 df-mnf 10757 df-xr 10758 df-ltxr 10759 df-le 10760 df-sub 10951 df-neg 10952 df-nn 11718 df-n0 11978 df-z 12064 df-uz 12326 df-fz 12983 |
This theorem is referenced by: etransclem31 43340 etransclem32 43341 etransclem34 43343 etransclem35 43344 etransclem36 43345 etransclem37 43346 etransclem38 43347 |
Copyright terms: Public domain | W3C validator |