MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalglt Structured version   Visualization version   GIF version

Theorem eucalglt 16555
Description: The second member of the state decreases with each iteration of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalglt (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → (2nd ‘(𝐸𝑋)) < (2nd𝑋)))
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalglt
StepHypRef Expression
1 eucalgval.1 . . . . . . . . 9 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
21eucalgval 16552 . . . . . . . 8 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
32adantr 480 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
4 simpr 484 . . . . . . . . 9 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) ≠ 0)
5 iftrue 4494 . . . . . . . . . . . . . 14 ((2nd𝑋) = 0 → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = 𝑋)
65eqeq2d 2740 . . . . . . . . . . . . 13 ((2nd𝑋) = 0 → ((𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) ↔ (𝐸𝑋) = 𝑋))
7 fveq2 6858 . . . . . . . . . . . . 13 ((𝐸𝑋) = 𝑋 → (2nd ‘(𝐸𝑋)) = (2nd𝑋))
86, 7biimtrdi 253 . . . . . . . . . . . 12 ((2nd𝑋) = 0 → ((𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) → (2nd ‘(𝐸𝑋)) = (2nd𝑋)))
9 eqeq2 2741 . . . . . . . . . . . 12 ((2nd𝑋) = 0 → ((2nd ‘(𝐸𝑋)) = (2nd𝑋) ↔ (2nd ‘(𝐸𝑋)) = 0))
108, 9sylibd 239 . . . . . . . . . . 11 ((2nd𝑋) = 0 → ((𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) → (2nd ‘(𝐸𝑋)) = 0))
113, 10syl5com 31 . . . . . . . . . 10 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((2nd𝑋) = 0 → (2nd ‘(𝐸𝑋)) = 0))
1211necon3ad 2938 . . . . . . . . 9 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → ¬ (2nd𝑋) = 0))
134, 12mpd 15 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ¬ (2nd𝑋) = 0)
1413iffalsed 4499 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = ⟨(2nd𝑋), ( mod ‘𝑋)⟩)
153, 14eqtrd 2764 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (𝐸𝑋) = ⟨(2nd𝑋), ( mod ‘𝑋)⟩)
1615fveq2d 6862 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) = (2nd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩))
17 fvex 6871 . . . . . 6 (2nd𝑋) ∈ V
18 fvex 6871 . . . . . 6 ( mod ‘𝑋) ∈ V
1917, 18op2nd 7977 . . . . 5 (2nd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩) = ( mod ‘𝑋)
2016, 19eqtrdi 2780 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) = ( mod ‘𝑋))
21 1st2nd2 8007 . . . . . . 7 (𝑋 ∈ (ℕ0 × ℕ0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
2221adantr 480 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
2322fveq2d 6862 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ( mod ‘𝑋) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩))
24 df-ov 7390 . . . . 5 ((1st𝑋) mod (2nd𝑋)) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩)
2523, 24eqtr4di 2782 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ( mod ‘𝑋) = ((1st𝑋) mod (2nd𝑋)))
2620, 25eqtrd 2764 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) = ((1st𝑋) mod (2nd𝑋)))
27 xp1st 8000 . . . . . 6 (𝑋 ∈ (ℕ0 × ℕ0) → (1st𝑋) ∈ ℕ0)
2827adantr 480 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (1st𝑋) ∈ ℕ0)
2928nn0red 12504 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (1st𝑋) ∈ ℝ)
30 xp2nd 8001 . . . . . . . . 9 (𝑋 ∈ (ℕ0 × ℕ0) → (2nd𝑋) ∈ ℕ0)
3130adantr 480 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℕ0)
32 elnn0 12444 . . . . . . . 8 ((2nd𝑋) ∈ ℕ0 ↔ ((2nd𝑋) ∈ ℕ ∨ (2nd𝑋) = 0))
3331, 32sylib 218 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((2nd𝑋) ∈ ℕ ∨ (2nd𝑋) = 0))
3433ord 864 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (¬ (2nd𝑋) ∈ ℕ → (2nd𝑋) = 0))
3513, 34mt3d 148 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℕ)
3635nnrpd 12993 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℝ+)
37 modlt 13842 . . . 4 (((1st𝑋) ∈ ℝ ∧ (2nd𝑋) ∈ ℝ+) → ((1st𝑋) mod (2nd𝑋)) < (2nd𝑋))
3829, 36, 37syl2anc 584 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((1st𝑋) mod (2nd𝑋)) < (2nd𝑋))
3926, 38eqbrtrd 5129 . 2 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) < (2nd𝑋))
4039ex 412 1 (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → (2nd ‘(𝐸𝑋)) < (2nd𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  ifcif 4488  cop 4595   class class class wbr 5107   × cxp 5636  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  cr 11067  0cc0 11068   < clt 11208  cn 12186  0cn0 12442  +crp 12951   mod cmo 13831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832
This theorem is referenced by:  eucalgcvga  16556
  Copyright terms: Public domain W3C validator