MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalg Structured version   Visualization version   GIF version

Theorem eucalg 16606
Description: Euclid's Algorithm computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0. Theorem 1.15 in [ApostolNT] p. 20.

Upon halting, the first member of the final state (𝑅𝑁) is equal to the gcd of the values comprising the input state 𝑀, 𝑁. This is Metamath 100 proof #69 (greatest common divisor algorithm). (Contributed by Paul Chapman, 31-Mar-2011.) (Proof shortened by Mario Carneiro, 29-May-2014.)

Hypotheses
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
eucalg.2 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
eucalg.3 𝐴 = ⟨𝑀, 𝑁
Assertion
Ref Expression
eucalg ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1st ‘(𝑅𝑁)) = (𝑀 gcd 𝑁))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦   𝑥,𝐴,𝑦   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑦)   𝐸(𝑥,𝑦)

Proof of Theorem eucalg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12894 . . . . . . . 8 0 = (ℤ‘0)
2 eucalg.2 . . . . . . . 8 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
3 0zd 12600 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℤ)
4 eucalg.3 . . . . . . . . 9 𝐴 = ⟨𝑀, 𝑁
5 opelxpi 5691 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ⟨𝑀, 𝑁⟩ ∈ (ℕ0 × ℕ0))
64, 5eqeltrid 2838 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐴 ∈ (ℕ0 × ℕ0))
7 eucalgval.1 . . . . . . . . . 10 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
87eucalgf 16602 . . . . . . . . 9 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
98a1i 11 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0))
101, 2, 3, 6, 9algrf 16592 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑅:ℕ0⟶(ℕ0 × ℕ0))
11 ffvelcdm 7071 . . . . . . 7 ((𝑅:ℕ0⟶(ℕ0 × ℕ0) ∧ 𝑁 ∈ ℕ0) → (𝑅𝑁) ∈ (ℕ0 × ℕ0))
1210, 11sylancom 588 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅𝑁) ∈ (ℕ0 × ℕ0))
13 1st2nd2 8027 . . . . . 6 ((𝑅𝑁) ∈ (ℕ0 × ℕ0) → (𝑅𝑁) = ⟨(1st ‘(𝑅𝑁)), (2nd ‘(𝑅𝑁))⟩)
1412, 13syl 17 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅𝑁) = ⟨(1st ‘(𝑅𝑁)), (2nd ‘(𝑅𝑁))⟩)
1514fveq2d 6880 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ( gcd ‘(𝑅𝑁)) = ( gcd ‘⟨(1st ‘(𝑅𝑁)), (2nd ‘(𝑅𝑁))⟩))
16 df-ov 7408 . . . 4 ((1st ‘(𝑅𝑁)) gcd (2nd ‘(𝑅𝑁))) = ( gcd ‘⟨(1st ‘(𝑅𝑁)), (2nd ‘(𝑅𝑁))⟩)
1715, 16eqtr4di 2788 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ( gcd ‘(𝑅𝑁)) = ((1st ‘(𝑅𝑁)) gcd (2nd ‘(𝑅𝑁))))
184fveq2i 6879 . . . . . . . 8 (2nd𝐴) = (2nd ‘⟨𝑀, 𝑁⟩)
19 op2ndg 8001 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
2018, 19eqtrid 2782 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (2nd𝐴) = 𝑁)
2120fveq2d 6880 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅‘(2nd𝐴)) = (𝑅𝑁))
2221fveq2d 6880 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (2nd ‘(𝑅‘(2nd𝐴))) = (2nd ‘(𝑅𝑁)))
23 xp2nd 8021 . . . . . . . . 9 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd𝐴) ∈ ℕ0)
2423nn0zd 12614 . . . . . . . 8 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd𝐴) ∈ ℤ)
25 uzid 12867 . . . . . . . 8 ((2nd𝐴) ∈ ℤ → (2nd𝐴) ∈ (ℤ‘(2nd𝐴)))
2624, 25syl 17 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd𝐴) ∈ (ℤ‘(2nd𝐴)))
27 eqid 2735 . . . . . . . 8 (2nd𝐴) = (2nd𝐴)
287, 2, 27eucalgcvga 16605 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd𝐴) ∈ (ℤ‘(2nd𝐴)) → (2nd ‘(𝑅‘(2nd𝐴))) = 0))
2926, 28mpd 15 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd ‘(𝑅‘(2nd𝐴))) = 0)
306, 29syl 17 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (2nd ‘(𝑅‘(2nd𝐴))) = 0)
3122, 30eqtr3d 2772 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (2nd ‘(𝑅𝑁)) = 0)
3231oveq2d 7421 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((1st ‘(𝑅𝑁)) gcd (2nd ‘(𝑅𝑁))) = ((1st ‘(𝑅𝑁)) gcd 0))
33 xp1st 8020 . . . 4 ((𝑅𝑁) ∈ (ℕ0 × ℕ0) → (1st ‘(𝑅𝑁)) ∈ ℕ0)
34 nn0gcdid0 16540 . . . 4 ((1st ‘(𝑅𝑁)) ∈ ℕ0 → ((1st ‘(𝑅𝑁)) gcd 0) = (1st ‘(𝑅𝑁)))
3512, 33, 343syl 18 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((1st ‘(𝑅𝑁)) gcd 0) = (1st ‘(𝑅𝑁)))
3617, 32, 353eqtrrd 2775 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1st ‘(𝑅𝑁)) = ( gcd ‘(𝑅𝑁)))
377eucalginv 16603 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → ( gcd ‘(𝐸𝑧)) = ( gcd ‘𝑧))
388ffvelcdmi 7073 . . . . . . 7 (𝑧 ∈ (ℕ0 × ℕ0) → (𝐸𝑧) ∈ (ℕ0 × ℕ0))
3938fvresd 6896 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = ( gcd ‘(𝐸𝑧)))
40 fvres 6895 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘𝑧) = ( gcd ‘𝑧))
4137, 39, 403eqtr4d 2780 . . . . 5 (𝑧 ∈ (ℕ0 × ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = (( gcd ↾ (ℕ0 × ℕ0))‘𝑧))
422, 8, 41alginv 16594 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝑁 ∈ ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅𝑁)) = (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅‘0)))
436, 42sylancom 588 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅𝑁)) = (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅‘0)))
4412fvresd 6896 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅𝑁)) = ( gcd ‘(𝑅𝑁)))
45 0nn0 12516 . . . . 5 0 ∈ ℕ0
46 ffvelcdm 7071 . . . . 5 ((𝑅:ℕ0⟶(ℕ0 × ℕ0) ∧ 0 ∈ ℕ0) → (𝑅‘0) ∈ (ℕ0 × ℕ0))
4710, 45, 46sylancl 586 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅‘0) ∈ (ℕ0 × ℕ0))
4847fvresd 6896 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (( gcd ↾ (ℕ0 × ℕ0))‘(𝑅‘0)) = ( gcd ‘(𝑅‘0)))
4943, 44, 483eqtr3d 2778 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ( gcd ‘(𝑅𝑁)) = ( gcd ‘(𝑅‘0)))
501, 2, 3, 6algr0 16591 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅‘0) = 𝐴)
5150, 4eqtrdi 2786 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑅‘0) = ⟨𝑀, 𝑁⟩)
5251fveq2d 6880 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ( gcd ‘(𝑅‘0)) = ( gcd ‘⟨𝑀, 𝑁⟩))
53 df-ov 7408 . . 3 (𝑀 gcd 𝑁) = ( gcd ‘⟨𝑀, 𝑁⟩)
5452, 53eqtr4di 2788 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ( gcd ‘(𝑅‘0)) = (𝑀 gcd 𝑁))
5536, 49, 543eqtrd 2774 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1st ‘(𝑅𝑁)) = (𝑀 gcd 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  ifcif 4500  {csn 4601  cop 4607   × cxp 5652  cres 5656  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  1st c1st 7986  2nd c2nd 7987  0cc0 11129  0cn0 12501  cz 12588  cuz 12852   mod cmo 13886  seqcseq 14019   gcd cgcd 16513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator