| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eucalgf | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
| Ref | Expression |
|---|---|
| eucalgval.1 | ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) |
| Ref | Expression |
|---|---|
| eucalgf | ⊢ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnne0 12300 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → 𝑦 ≠ 0) | |
| 2 | 1 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → 𝑦 ≠ 0) |
| 3 | 2 | neneqd 2945 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 = 0) |
| 4 | 3 | iffalsed 4536 | . . . . . 6 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = 〈𝑦, (𝑥 mod 𝑦)〉) |
| 5 | nnnn0 12533 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0) | |
| 6 | 5 | adantl 481 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ0) |
| 7 | nn0z 12638 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℤ) | |
| 8 | zmodcl 13931 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0) | |
| 9 | 7, 8 | sylan 580 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0) |
| 10 | 6, 9 | opelxpd 5724 | . . . . . 6 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → 〈𝑦, (𝑥 mod 𝑦)〉 ∈ (ℕ0 × ℕ0)) |
| 11 | 4, 10 | eqeltrd 2841 | . . . . 5 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
| 12 | 11 | adantlr 715 | . . . 4 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
| 13 | iftrue 4531 | . . . . . 6 ⊢ (𝑦 = 0 → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = 〈𝑥, 𝑦〉) | |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) = 〈𝑥, 𝑦〉) |
| 15 | opelxpi 5722 | . . . . . 6 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → 〈𝑥, 𝑦〉 ∈ (ℕ0 × ℕ0)) | |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → 〈𝑥, 𝑦〉 ∈ (ℕ0 × ℕ0)) |
| 17 | 14, 16 | eqeltrd 2841 | . . . 4 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
| 18 | simpr 484 | . . . . 5 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0) | |
| 19 | elnn0 12528 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℕ ∨ 𝑦 = 0)) | |
| 20 | 18, 19 | sylib 218 | . . . 4 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝑦 ∈ ℕ ∨ 𝑦 = 0)) |
| 21 | 12, 17, 20 | mpjaodan 961 | . . 3 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0)) |
| 22 | 21 | rgen2 3199 | . 2 ⊢ ∀𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0 if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0) |
| 23 | eucalgval.1 | . . 3 ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) | |
| 24 | 23 | fmpo 8093 | . 2 ⊢ (∀𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0 if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉) ∈ (ℕ0 × ℕ0) ↔ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)) |
| 25 | 22, 24 | mpbi 230 | 1 ⊢ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ifcif 4525 〈cop 4632 × cxp 5683 ⟶wf 6557 (class class class)co 7431 ∈ cmpo 7433 0cc0 11155 ℕcn 12266 ℕ0cn0 12526 ℤcz 12613 mod cmo 13909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fl 13832 df-mod 13910 |
| This theorem is referenced by: eucalgcvga 16623 eucalg 16624 |
| Copyright terms: Public domain | W3C validator |