MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalgf Structured version   Visualization version   GIF version

Theorem eucalgf 16216
Description: Domain and codomain of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalgf 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalgf
StepHypRef Expression
1 nnne0 11937 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
21adantl 481 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → 𝑦 ≠ 0)
32neneqd 2947 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → ¬ 𝑦 = 0)
43iffalsed 4467 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = ⟨𝑦, (𝑥 mod 𝑦)⟩)
5 nnnn0 12170 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
65adantl 481 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → 𝑦 ∈ ℕ0)
7 nn0z 12273 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
8 zmodcl 13539 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0)
97, 8sylan 579 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0)
106, 9opelxpd 5618 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → ⟨𝑦, (𝑥 mod 𝑦)⟩ ∈ (ℕ0 × ℕ0))
114, 10eqeltrd 2839 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
1211adantlr 711 . . . 4 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
13 iftrue 4462 . . . . . 6 (𝑦 = 0 → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = ⟨𝑥, 𝑦⟩)
1413adantl 481 . . . . 5 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = ⟨𝑥, 𝑦⟩)
15 opelxpi 5617 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ⟨𝑥, 𝑦⟩ ∈ (ℕ0 × ℕ0))
1615adantr 480 . . . . 5 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → ⟨𝑥, 𝑦⟩ ∈ (ℕ0 × ℕ0))
1714, 16eqeltrd 2839 . . . 4 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
18 simpr 484 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
19 elnn0 12165 . . . . 5 (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℕ ∨ 𝑦 = 0))
2018, 19sylib 217 . . . 4 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦 ∈ ℕ ∨ 𝑦 = 0))
2112, 17, 20mpjaodan 955 . . 3 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
2221rgen2 3126 . 2 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0)
23 eucalgval.1 . . 3 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
2423fmpo 7881 . 2 (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0) ↔ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0))
2522, 24mpbi 229 1 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  ifcif 4456  cop 4564   × cxp 5578  wf 6414  (class class class)co 7255  cmpo 7257  0cc0 10802  cn 11903  0cn0 12163  cz 12249   mod cmo 13517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440  df-mod 13518
This theorem is referenced by:  eucalgcvga  16219  eucalg  16220
  Copyright terms: Public domain W3C validator