MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalgf Structured version   Visualization version   GIF version

Theorem eucalgf 16616
Description: Domain and codomain of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalgf 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalgf
StepHypRef Expression
1 nnne0 12297 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
21adantl 481 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → 𝑦 ≠ 0)
32neneqd 2942 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → ¬ 𝑦 = 0)
43iffalsed 4541 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = ⟨𝑦, (𝑥 mod 𝑦)⟩)
5 nnnn0 12530 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
65adantl 481 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → 𝑦 ∈ ℕ0)
7 nn0z 12635 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
8 zmodcl 13927 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0)
97, 8sylan 580 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → (𝑥 mod 𝑦) ∈ ℕ0)
106, 9opelxpd 5727 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → ⟨𝑦, (𝑥 mod 𝑦)⟩ ∈ (ℕ0 × ℕ0))
114, 10eqeltrd 2838 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
1211adantlr 715 . . . 4 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 ∈ ℕ) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
13 iftrue 4536 . . . . . 6 (𝑦 = 0 → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = ⟨𝑥, 𝑦⟩)
1413adantl 481 . . . . 5 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) = ⟨𝑥, 𝑦⟩)
15 opelxpi 5725 . . . . . 6 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ⟨𝑥, 𝑦⟩ ∈ (ℕ0 × ℕ0))
1615adantr 480 . . . . 5 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → ⟨𝑥, 𝑦⟩ ∈ (ℕ0 × ℕ0))
1714, 16eqeltrd 2838 . . . 4 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 = 0) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
18 simpr 484 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
19 elnn0 12525 . . . . 5 (𝑦 ∈ ℕ0 ↔ (𝑦 ∈ ℕ ∨ 𝑦 = 0))
2018, 19sylib 218 . . . 4 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦 ∈ ℕ ∨ 𝑦 = 0))
2112, 17, 20mpjaodan 960 . . 3 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0))
2221rgen2 3196 . 2 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0)
23 eucalgval.1 . . 3 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
2423fmpo 8091 . 2 (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩) ∈ (ℕ0 × ℕ0) ↔ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0))
2522, 24mpbi 230 1 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  wral 3058  ifcif 4530  cop 4636   × cxp 5686  wf 6558  (class class class)co 7430  cmpo 7432  0cc0 11152  cn 12263  0cn0 12523  cz 12610   mod cmo 13905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fl 13828  df-mod 13906
This theorem is referenced by:  eucalgcvga  16619  eucalg  16620
  Copyright terms: Public domain W3C validator