MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalginv Structured version   Visualization version   GIF version

Theorem eucalginv 16289
Description: The invariant of the step function 𝐸 for Euclid's Algorithm is the gcd operator applied to the state. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalginv (𝑋 ∈ (ℕ0 × ℕ0) → ( gcd ‘(𝐸𝑋)) = ( gcd ‘𝑋))
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalginv
StepHypRef Expression
1 eucalgval.1 . . . 4 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
21eucalgval 16287 . . 3 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
32fveq2d 6778 . 2 (𝑋 ∈ (ℕ0 × ℕ0) → ( gcd ‘(𝐸𝑋)) = ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)))
4 1st2nd2 7870 . . . . . . . . 9 (𝑋 ∈ (ℕ0 × ℕ0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
54adantr 481 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
65fveq2d 6778 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( mod ‘𝑋) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩))
7 df-ov 7278 . . . . . . 7 ((1st𝑋) mod (2nd𝑋)) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩)
86, 7eqtr4di 2796 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( mod ‘𝑋) = ((1st𝑋) mod (2nd𝑋)))
98oveq2d 7291 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ((2nd𝑋) gcd ( mod ‘𝑋)) = ((2nd𝑋) gcd ((1st𝑋) mod (2nd𝑋))))
10 nnz 12342 . . . . . 6 ((2nd𝑋) ∈ ℕ → (2nd𝑋) ∈ ℤ)
11 xp1st 7863 . . . . . . . . . 10 (𝑋 ∈ (ℕ0 × ℕ0) → (1st𝑋) ∈ ℕ0)
1211adantr 481 . . . . . . . . 9 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → (1st𝑋) ∈ ℕ0)
1312nn0zd 12424 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → (1st𝑋) ∈ ℤ)
14 zmodcl 13611 . . . . . . . 8 (((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℕ) → ((1st𝑋) mod (2nd𝑋)) ∈ ℕ0)
1513, 14sylancom 588 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ((1st𝑋) mod (2nd𝑋)) ∈ ℕ0)
1615nn0zd 12424 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ((1st𝑋) mod (2nd𝑋)) ∈ ℤ)
17 gcdcom 16220 . . . . . 6 (((2nd𝑋) ∈ ℤ ∧ ((1st𝑋) mod (2nd𝑋)) ∈ ℤ) → ((2nd𝑋) gcd ((1st𝑋) mod (2nd𝑋))) = (((1st𝑋) mod (2nd𝑋)) gcd (2nd𝑋)))
1810, 16, 17syl2an2 683 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ((2nd𝑋) gcd ((1st𝑋) mod (2nd𝑋))) = (((1st𝑋) mod (2nd𝑋)) gcd (2nd𝑋)))
19 modgcd 16240 . . . . . 6 (((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℕ) → (((1st𝑋) mod (2nd𝑋)) gcd (2nd𝑋)) = ((1st𝑋) gcd (2nd𝑋)))
2013, 19sylancom 588 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → (((1st𝑋) mod (2nd𝑋)) gcd (2nd𝑋)) = ((1st𝑋) gcd (2nd𝑋)))
219, 18, 203eqtrd 2782 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ((2nd𝑋) gcd ( mod ‘𝑋)) = ((1st𝑋) gcd (2nd𝑋)))
22 nnne0 12007 . . . . . . . . 9 ((2nd𝑋) ∈ ℕ → (2nd𝑋) ≠ 0)
2322adantl 482 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → (2nd𝑋) ≠ 0)
2423neneqd 2948 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ¬ (2nd𝑋) = 0)
2524iffalsed 4470 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = ⟨(2nd𝑋), ( mod ‘𝑋)⟩)
2625fveq2d 6778 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ( gcd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩))
27 df-ov 7278 . . . . 5 ((2nd𝑋) gcd ( mod ‘𝑋)) = ( gcd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩)
2826, 27eqtr4di 2796 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ((2nd𝑋) gcd ( mod ‘𝑋)))
295fveq2d 6778 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( gcd ‘𝑋) = ( gcd ‘⟨(1st𝑋), (2nd𝑋)⟩))
30 df-ov 7278 . . . . 5 ((1st𝑋) gcd (2nd𝑋)) = ( gcd ‘⟨(1st𝑋), (2nd𝑋)⟩)
3129, 30eqtr4di 2796 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( gcd ‘𝑋) = ((1st𝑋) gcd (2nd𝑋)))
3221, 28, 313eqtr4d 2788 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ( gcd ‘𝑋))
33 iftrue 4465 . . . . 5 ((2nd𝑋) = 0 → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = 𝑋)
3433fveq2d 6778 . . . 4 ((2nd𝑋) = 0 → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ( gcd ‘𝑋))
3534adantl 482 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) = 0) → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ( gcd ‘𝑋))
36 xp2nd 7864 . . . 4 (𝑋 ∈ (ℕ0 × ℕ0) → (2nd𝑋) ∈ ℕ0)
37 elnn0 12235 . . . 4 ((2nd𝑋) ∈ ℕ0 ↔ ((2nd𝑋) ∈ ℕ ∨ (2nd𝑋) = 0))
3836, 37sylib 217 . . 3 (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd𝑋) ∈ ℕ ∨ (2nd𝑋) = 0))
3932, 35, 38mpjaodan 956 . 2 (𝑋 ∈ (ℕ0 × ℕ0) → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ( gcd ‘𝑋))
403, 39eqtrd 2778 1 (𝑋 ∈ (ℕ0 × ℕ0) → ( gcd ‘(𝐸𝑋)) = ( gcd ‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  ifcif 4459  cop 4567   × cxp 5587  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  0cc0 10871  cn 11973  0cn0 12233  cz 12319   mod cmo 13589   gcd cgcd 16201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202
This theorem is referenced by:  eucalg  16292
  Copyright terms: Public domain W3C validator