MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lems Structured version   Visualization version   GIF version

Theorem eupth2lems 30167
Description: Lemma for eupth2 30168 (induction step): The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct, if the Eulerian path shortened by one edge has this property. Formerly part of proof for eupth2 30168. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v 𝑉 = (Vtx‘𝐺)
eupth2.i 𝐼 = (iEdg‘𝐺)
eupth2.g (𝜑𝐺 ∈ UPGraph)
eupth2.f (𝜑 → Fun 𝐼)
eupth2.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
Assertion
Ref Expression
eupth2lems ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝑃(𝑥,𝑛)   𝐹(𝑛)   𝐺(𝑥,𝑛)   𝐼(𝑛)   𝑉(𝑛)

Proof of Theorem eupth2lems
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nn0re 12451 . . . . . 6 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
21adantl 481 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℝ)
32lep1d 12114 . . . 4 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ≤ (𝑛 + 1))
4 peano2re 11347 . . . . . 6 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
52, 4syl 17 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (𝑛 + 1) ∈ ℝ)
6 eupth2.p . . . . . . . 8 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
7 eupthiswlk 30141 . . . . . . . 8 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
8 wlkcl 29543 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
96, 7, 83syl 18 . . . . . . 7 (𝜑 → (♯‘𝐹) ∈ ℕ0)
109nn0red 12504 . . . . . 6 (𝜑 → (♯‘𝐹) ∈ ℝ)
1110adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (♯‘𝐹) ∈ ℝ)
12 letr 11268 . . . . 5 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ) → ((𝑛 ≤ (𝑛 + 1) ∧ (𝑛 + 1) ≤ (♯‘𝐹)) → 𝑛 ≤ (♯‘𝐹)))
132, 5, 11, 12syl3anc 1373 . . . 4 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ≤ (𝑛 + 1) ∧ (𝑛 + 1) ≤ (♯‘𝐹)) → 𝑛 ≤ (♯‘𝐹)))
143, 13mpand 695 . . 3 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) ≤ (♯‘𝐹) → 𝑛 ≤ (♯‘𝐹)))
1514imim1d 82 . 2 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))))
16 fveq2 6858 . . . . . . . . 9 (𝑥 = 𝑦 → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥) = ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑦))
1716breq2d 5119 . . . . . . . 8 (𝑥 = 𝑦 → (2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥) ↔ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑦)))
1817notbid 318 . . . . . . 7 (𝑥 = 𝑦 → (¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑦)))
1918elrab 3659 . . . . . 6 (𝑦 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} ↔ (𝑦𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑦)))
20 eupth2.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
21 eupth2.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
22 eupth2.g . . . . . . . . . 10 (𝜑𝐺 ∈ UPGraph)
2322ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → 𝐺 ∈ UPGraph)
24 eupth2.f . . . . . . . . . 10 (𝜑 → Fun 𝐼)
2524ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → Fun 𝐼)
266ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → 𝐹(EulerPaths‘𝐺)𝑃)
27 eqid 2729 . . . . . . . . 9 𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩ = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩
28 eqid 2729 . . . . . . . . 9 𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩ = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩
29 simpr 484 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
3029ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → 𝑛 ∈ ℕ0)
31 simprl 770 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑛 + 1) ≤ (♯‘𝐹))
3231adantr 480 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → (𝑛 + 1) ≤ (♯‘𝐹))
33 simpr 484 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → 𝑦𝑉)
34 simplrr 777 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))
3520, 21, 23, 25, 26, 27, 28, 30, 32, 33, 34eupth2lem3 30165 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → (¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑦) ↔ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))
3635pm5.32da 579 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → ((𝑦𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑦)) ↔ (𝑦𝑉𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
37 0elpw 5311 . . . . . . . . . . 11 ∅ ∈ 𝒫 𝑉
3820wlkepvtx 29588 . . . . . . . . . . . . . . . 16 (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘(♯‘𝐹)) ∈ 𝑉))
3938simpld 494 . . . . . . . . . . . . . . 15 (𝐹(Walks‘𝐺)𝑃 → (𝑃‘0) ∈ 𝑉)
406, 7, 393syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑃‘0) ∈ 𝑉)
4140ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑃‘0) ∈ 𝑉)
4220wlkp 29544 . . . . . . . . . . . . . . . 16 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
436, 7, 423syl 18 . . . . . . . . . . . . . . 15 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
4443ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → 𝑃:(0...(♯‘𝐹))⟶𝑉)
45 peano2nn0 12482 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
4645adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ0) → (𝑛 + 1) ∈ ℕ0)
4746adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑛 + 1) ∈ ℕ0)
48 nn0uz 12835 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
4947, 48eleqtrdi 2838 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑛 + 1) ∈ (ℤ‘0))
509ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (♯‘𝐹) ∈ ℕ0)
5150nn0zd 12555 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (♯‘𝐹) ∈ ℤ)
52 elfz5 13477 . . . . . . . . . . . . . . . 16 (((𝑛 + 1) ∈ (ℤ‘0) ∧ (♯‘𝐹) ∈ ℤ) → ((𝑛 + 1) ∈ (0...(♯‘𝐹)) ↔ (𝑛 + 1) ≤ (♯‘𝐹)))
5349, 51, 52syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → ((𝑛 + 1) ∈ (0...(♯‘𝐹)) ↔ (𝑛 + 1) ≤ (♯‘𝐹)))
5431, 53mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑛 + 1) ∈ (0...(♯‘𝐹)))
5544, 54ffvelcdmd 7057 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑃‘(𝑛 + 1)) ∈ 𝑉)
5641, 55prssd 4786 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → {(𝑃‘0), (𝑃‘(𝑛 + 1))} ⊆ 𝑉)
57 prex 5392 . . . . . . . . . . . . 13 {(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ V
5857elpw 4567 . . . . . . . . . . . 12 ({(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ 𝒫 𝑉 ↔ {(𝑃‘0), (𝑃‘(𝑛 + 1))} ⊆ 𝑉)
5956, 58sylibr 234 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → {(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ 𝒫 𝑉)
60 ifcl 4534 . . . . . . . . . . 11 ((∅ ∈ 𝒫 𝑉 ∧ {(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ 𝒫 𝑉) → if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ∈ 𝒫 𝑉)
6137, 59, 60sylancr 587 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ∈ 𝒫 𝑉)
6261elpwid 4572 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ⊆ 𝑉)
6362sseld 3945 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) → 𝑦𝑉))
6463pm4.71rd 562 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ↔ (𝑦𝑉𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
6536, 64bitr4d 282 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → ((𝑦𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑦)) ↔ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))
6619, 65bitrid 283 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑦 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} ↔ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))
6766eqrdv 2727 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))
6867exp32 420 . . 3 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) ≤ (♯‘𝐹) → ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
6968a2d 29 . 2 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
7015, 69syld 47 1 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563  {cpr 4591  cop 4595   class class class wbr 5107  cres 5640  cima 5641  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  cle 11209  2c2 12241  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  ..^cfzo 13615  chash 14295  cdvds 16222  Vtxcvtx 28923  iEdgciedg 28924  UPGraphcupgr 29007  VtxDegcvtxdg 29393  Walkscwlks 29524  EulerPathsceupth 30126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-xadd 13073  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-vtx 28925  df-iedg 28926  df-edg 28975  df-uhgr 28985  df-ushgr 28986  df-upgr 29009  df-uspgr 29077  df-vtxdg 29394  df-wlks 29527  df-trls 29620  df-eupth 30127
This theorem is referenced by:  eupth2  30168
  Copyright terms: Public domain W3C validator