| Step | Hyp | Ref
| Expression |
| 1 | | nn0re 12535 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℝ) |
| 2 | 1 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℝ) |
| 3 | 2 | lep1d 12199 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ≤ (𝑛 + 1)) |
| 4 | | peano2re 11434 |
. . . . . 6
⊢ (𝑛 ∈ ℝ → (𝑛 + 1) ∈
ℝ) |
| 5 | 2, 4 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑛 + 1) ∈
ℝ) |
| 6 | | eupth2.p |
. . . . . . . 8
⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
| 7 | | eupthiswlk 30231 |
. . . . . . . 8
⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| 8 | | wlkcl 29633 |
. . . . . . . 8
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈
ℕ0) |
| 9 | 6, 7, 8 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐹) ∈
ℕ0) |
| 10 | 9 | nn0red 12588 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐹) ∈
ℝ) |
| 11 | 10 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(♯‘𝐹) ∈
ℝ) |
| 12 | | letr 11355 |
. . . . 5
⊢ ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧
(♯‘𝐹) ∈
ℝ) → ((𝑛 ≤
(𝑛 + 1) ∧ (𝑛 + 1) ≤ (♯‘𝐹)) → 𝑛 ≤ (♯‘𝐹))) |
| 13 | 2, 5, 11, 12 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (𝑛 + 1) ∧ (𝑛 + 1) ≤ (♯‘𝐹)) → 𝑛 ≤ (♯‘𝐹))) |
| 14 | 3, 13 | mpand 695 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 1) ≤ (♯‘𝐹) → 𝑛 ≤ (♯‘𝐹))) |
| 15 | 14 | imim1d 82 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})))) |
| 16 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥) = ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑦)) |
| 17 | 16 | breq2d 5155 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥) ↔ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑦))) |
| 18 | 17 | notbid 318 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥) ↔ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑦))) |
| 19 | 18 | elrab 3692 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} ↔ (𝑦 ∈ 𝑉 ∧ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑦))) |
| 20 | | eupth2.v |
. . . . . . . . 9
⊢ 𝑉 = (Vtx‘𝐺) |
| 21 | | eupth2.i |
. . . . . . . . 9
⊢ 𝐼 = (iEdg‘𝐺) |
| 22 | | eupth2.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| 23 | 22 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → 𝐺 ∈ UPGraph) |
| 24 | | eupth2.f |
. . . . . . . . . 10
⊢ (𝜑 → Fun 𝐼) |
| 25 | 24 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → Fun 𝐼) |
| 26 | 6 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → 𝐹(EulerPaths‘𝐺)𝑃) |
| 27 | | eqid 2737 |
. . . . . . . . 9
⊢
〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))〉 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))〉 |
| 28 | | eqid 2737 |
. . . . . . . . 9
⊢
〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉 |
| 29 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
| 30 | 29 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → 𝑛 ∈ ℕ0) |
| 31 | | simprl 771 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑛 + 1) ≤ (♯‘𝐹)) |
| 32 | 31 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → (𝑛 + 1) ≤ (♯‘𝐹)) |
| 33 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) |
| 34 | | simplrr 778 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})) |
| 35 | 20, 21, 23, 25, 26, 27, 28, 30, 32, 33, 34 | eupth2lem3 30255 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → (¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑦) ↔ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))) |
| 36 | 35 | pm5.32da 579 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → ((𝑦 ∈ 𝑉 ∧ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑦)) ↔ (𝑦 ∈ 𝑉 ∧ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))) |
| 37 | | 0elpw 5356 |
. . . . . . . . . . 11
⊢ ∅
∈ 𝒫 𝑉 |
| 38 | 20 | wlkepvtx 29678 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘(♯‘𝐹)) ∈ 𝑉)) |
| 39 | 38 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃‘0) ∈ 𝑉) |
| 40 | 6, 7, 39 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃‘0) ∈ 𝑉) |
| 41 | 40 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑃‘0) ∈ 𝑉) |
| 42 | 20 | wlkp 29634 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
| 43 | 6, 7, 42 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
| 44 | 43 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
| 45 | | peano2nn0 12566 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ0) |
| 46 | 45 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑛 + 1) ∈
ℕ0) |
| 47 | 46 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑛 + 1) ∈
ℕ0) |
| 48 | | nn0uz 12920 |
. . . . . . . . . . . . . . . . 17
⊢
ℕ0 = (ℤ≥‘0) |
| 49 | 47, 48 | eleqtrdi 2851 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑛 + 1) ∈
(ℤ≥‘0)) |
| 50 | 9 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (♯‘𝐹) ∈
ℕ0) |
| 51 | 50 | nn0zd 12639 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (♯‘𝐹) ∈ ℤ) |
| 52 | | elfz5 13556 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 + 1) ∈
(ℤ≥‘0) ∧ (♯‘𝐹) ∈ ℤ) → ((𝑛 + 1) ∈
(0...(♯‘𝐹))
↔ (𝑛 + 1) ≤
(♯‘𝐹))) |
| 53 | 49, 51, 52 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → ((𝑛 + 1) ∈ (0...(♯‘𝐹)) ↔ (𝑛 + 1) ≤ (♯‘𝐹))) |
| 54 | 31, 53 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑛 + 1) ∈ (0...(♯‘𝐹))) |
| 55 | 44, 54 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑃‘(𝑛 + 1)) ∈ 𝑉) |
| 56 | 41, 55 | prssd 4822 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → {(𝑃‘0), (𝑃‘(𝑛 + 1))} ⊆ 𝑉) |
| 57 | | prex 5437 |
. . . . . . . . . . . . 13
⊢ {(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ V |
| 58 | 57 | elpw 4604 |
. . . . . . . . . . . 12
⊢ ({(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ 𝒫 𝑉 ↔ {(𝑃‘0), (𝑃‘(𝑛 + 1))} ⊆ 𝑉) |
| 59 | 56, 58 | sylibr 234 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → {(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ 𝒫 𝑉) |
| 60 | | ifcl 4571 |
. . . . . . . . . . 11
⊢ ((∅
∈ 𝒫 𝑉 ∧
{(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ 𝒫 𝑉) → if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ∈ 𝒫 𝑉) |
| 61 | 37, 59, 60 | sylancr 587 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ∈ 𝒫 𝑉) |
| 62 | 61 | elpwid 4609 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ⊆ 𝑉) |
| 63 | 62 | sseld 3982 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) → 𝑦 ∈ 𝑉)) |
| 64 | 63 | pm4.71rd 562 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ↔ (𝑦 ∈ 𝑉 ∧ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))) |
| 65 | 36, 64 | bitr4d 282 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → ((𝑦 ∈ 𝑉 ∧ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑦)) ↔ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))) |
| 66 | 19, 65 | bitrid 283 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑦 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} ↔ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))) |
| 67 | 66 | eqrdv 2735 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})) |
| 68 | 67 | exp32 420 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 1) ≤ (♯‘𝐹) → ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))) |
| 69 | 68 | a2d 29 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))) |
| 70 | 15, 69 | syld 47 |
1
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))) |