MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lems Structured version   Visualization version   GIF version

Theorem eupth2lems 29480
Description: Lemma for eupth2 29481 (induction step): The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct, if the Eulerian path shortened by one edge has this property. Formerly part of proof for eupth2 29481. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v 𝑉 = (Vtxβ€˜πΊ)
eupth2.i 𝐼 = (iEdgβ€˜πΊ)
eupth2.g (πœ‘ β†’ 𝐺 ∈ UPGraph)
eupth2.f (πœ‘ β†’ Fun 𝐼)
eupth2.p (πœ‘ β†’ 𝐹(EulerPathsβ€˜πΊ)𝑃)
Assertion
Ref Expression
eupth2lems ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ ((𝑛 ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)})) β†’ ((𝑛 + 1) ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}))))
Distinct variable groups:   πœ‘,π‘₯   π‘₯,𝐹   π‘₯,𝐼   π‘₯,𝑉   π‘₯,𝑛
Allowed substitution hints:   πœ‘(𝑛)   𝑃(π‘₯,𝑛)   𝐹(𝑛)   𝐺(π‘₯,𝑛)   𝐼(𝑛)   𝑉(𝑛)

Proof of Theorem eupth2lems
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nn0re 12477 . . . . . 6 (𝑛 ∈ β„•0 β†’ 𝑛 ∈ ℝ)
21adantl 482 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ 𝑛 ∈ ℝ)
32lep1d 12141 . . . 4 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ 𝑛 ≀ (𝑛 + 1))
4 peano2re 11383 . . . . . 6 (𝑛 ∈ ℝ β†’ (𝑛 + 1) ∈ ℝ)
52, 4syl 17 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ (𝑛 + 1) ∈ ℝ)
6 eupth2.p . . . . . . . 8 (πœ‘ β†’ 𝐹(EulerPathsβ€˜πΊ)𝑃)
7 eupthiswlk 29454 . . . . . . . 8 (𝐹(EulerPathsβ€˜πΊ)𝑃 β†’ 𝐹(Walksβ€˜πΊ)𝑃)
8 wlkcl 28861 . . . . . . . 8 (𝐹(Walksβ€˜πΊ)𝑃 β†’ (β™―β€˜πΉ) ∈ β„•0)
96, 7, 83syl 18 . . . . . . 7 (πœ‘ β†’ (β™―β€˜πΉ) ∈ β„•0)
109nn0red 12529 . . . . . 6 (πœ‘ β†’ (β™―β€˜πΉ) ∈ ℝ)
1110adantr 481 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ (β™―β€˜πΉ) ∈ ℝ)
12 letr 11304 . . . . 5 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (β™―β€˜πΉ) ∈ ℝ) β†’ ((𝑛 ≀ (𝑛 + 1) ∧ (𝑛 + 1) ≀ (β™―β€˜πΉ)) β†’ 𝑛 ≀ (β™―β€˜πΉ)))
132, 5, 11, 12syl3anc 1371 . . . 4 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ ((𝑛 ≀ (𝑛 + 1) ∧ (𝑛 + 1) ≀ (β™―β€˜πΉ)) β†’ 𝑛 ≀ (β™―β€˜πΉ)))
143, 13mpand 693 . . 3 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ ((𝑛 + 1) ≀ (β™―β€˜πΉ) β†’ 𝑛 ≀ (β™―β€˜πΉ)))
1514imim1d 82 . 2 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ ((𝑛 ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)})) β†’ ((𝑛 + 1) ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))))
16 fveq2 6888 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯) = ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘¦))
1716breq2d 5159 . . . . . . . 8 (π‘₯ = 𝑦 β†’ (2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯) ↔ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘¦)))
1817notbid 317 . . . . . . 7 (π‘₯ = 𝑦 β†’ (Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯) ↔ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘¦)))
1918elrab 3682 . . . . . 6 (𝑦 ∈ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯)} ↔ (𝑦 ∈ 𝑉 ∧ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘¦)))
20 eupth2.v . . . . . . . . 9 𝑉 = (Vtxβ€˜πΊ)
21 eupth2.i . . . . . . . . 9 𝐼 = (iEdgβ€˜πΊ)
22 eupth2.g . . . . . . . . . 10 (πœ‘ β†’ 𝐺 ∈ UPGraph)
2322ad3antrrr 728 . . . . . . . . 9 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ 𝐺 ∈ UPGraph)
24 eupth2.f . . . . . . . . . 10 (πœ‘ β†’ Fun 𝐼)
2524ad3antrrr 728 . . . . . . . . 9 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ Fun 𝐼)
266ad3antrrr 728 . . . . . . . . 9 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ 𝐹(EulerPathsβ€˜πΊ)𝑃)
27 eqid 2732 . . . . . . . . 9 βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩ = βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩
28 eqid 2732 . . . . . . . . 9 βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩ = βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩
29 simpr 485 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ 𝑛 ∈ β„•0)
3029ad2antrr 724 . . . . . . . . 9 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ 𝑛 ∈ β„•0)
31 simprl 769 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (𝑛 + 1) ≀ (β™―β€˜πΉ))
3231adantr 481 . . . . . . . . 9 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ (𝑛 + 1) ≀ (β™―β€˜πΉ))
33 simpr 485 . . . . . . . . 9 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ 𝑦 ∈ 𝑉)
34 simplrr 776 . . . . . . . . 9 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))
3520, 21, 23, 25, 26, 27, 28, 30, 32, 33, 34eupth2lem3 29478 . . . . . . . 8 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ (Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘¦) ↔ 𝑦 ∈ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))})))
3635pm5.32da 579 . . . . . . 7 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ ((𝑦 ∈ 𝑉 ∧ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘¦)) ↔ (𝑦 ∈ 𝑉 ∧ 𝑦 ∈ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}))))
37 0elpw 5353 . . . . . . . . . . 11 βˆ… ∈ 𝒫 𝑉
3820wlkepvtx 28906 . . . . . . . . . . . . . . . 16 (𝐹(Walksβ€˜πΊ)𝑃 β†’ ((π‘ƒβ€˜0) ∈ 𝑉 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) ∈ 𝑉))
3938simpld 495 . . . . . . . . . . . . . . 15 (𝐹(Walksβ€˜πΊ)𝑃 β†’ (π‘ƒβ€˜0) ∈ 𝑉)
406, 7, 393syl 18 . . . . . . . . . . . . . 14 (πœ‘ β†’ (π‘ƒβ€˜0) ∈ 𝑉)
4140ad2antrr 724 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (π‘ƒβ€˜0) ∈ 𝑉)
4220wlkp 28862 . . . . . . . . . . . . . . . 16 (𝐹(Walksβ€˜πΊ)𝑃 β†’ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰)
436, 7, 423syl 18 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰)
4443ad2antrr 724 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰)
45 peano2nn0 12508 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ β„•0 β†’ (𝑛 + 1) ∈ β„•0)
4645adantl 482 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ (𝑛 + 1) ∈ β„•0)
4746adantr 481 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (𝑛 + 1) ∈ β„•0)
48 nn0uz 12860 . . . . . . . . . . . . . . . . 17 β„•0 = (β„€β‰₯β€˜0)
4947, 48eleqtrdi 2843 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (𝑛 + 1) ∈ (β„€β‰₯β€˜0))
509ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (β™―β€˜πΉ) ∈ β„•0)
5150nn0zd 12580 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (β™―β€˜πΉ) ∈ β„€)
52 elfz5 13489 . . . . . . . . . . . . . . . 16 (((𝑛 + 1) ∈ (β„€β‰₯β€˜0) ∧ (β™―β€˜πΉ) ∈ β„€) β†’ ((𝑛 + 1) ∈ (0...(β™―β€˜πΉ)) ↔ (𝑛 + 1) ≀ (β™―β€˜πΉ)))
5349, 51, 52syl2anc 584 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ ((𝑛 + 1) ∈ (0...(β™―β€˜πΉ)) ↔ (𝑛 + 1) ≀ (β™―β€˜πΉ)))
5431, 53mpbird 256 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (𝑛 + 1) ∈ (0...(β™―β€˜πΉ)))
5544, 54ffvelcdmd 7084 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (π‘ƒβ€˜(𝑛 + 1)) ∈ 𝑉)
5641, 55prssd 4824 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))} βŠ† 𝑉)
57 prex 5431 . . . . . . . . . . . . 13 {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))} ∈ V
5857elpw 4605 . . . . . . . . . . . 12 ({(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))} ∈ 𝒫 𝑉 ↔ {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))} βŠ† 𝑉)
5956, 58sylibr 233 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))} ∈ 𝒫 𝑉)
60 ifcl 4572 . . . . . . . . . . 11 ((βˆ… ∈ 𝒫 𝑉 ∧ {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))} ∈ 𝒫 𝑉) β†’ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}) ∈ 𝒫 𝑉)
6137, 59, 60sylancr 587 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}) ∈ 𝒫 𝑉)
6261elpwid 4610 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}) βŠ† 𝑉)
6362sseld 3980 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (𝑦 ∈ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}) β†’ 𝑦 ∈ 𝑉))
6463pm4.71rd 563 . . . . . . 7 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (𝑦 ∈ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}) ↔ (𝑦 ∈ 𝑉 ∧ 𝑦 ∈ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}))))
6536, 64bitr4d 281 . . . . . 6 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ ((𝑦 ∈ 𝑉 ∧ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘¦)) ↔ 𝑦 ∈ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))})))
6619, 65bitrid 282 . . . . 5 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (𝑦 ∈ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯)} ↔ 𝑦 ∈ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))})))
6766eqrdv 2730 . . . 4 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}))
6867exp32 421 . . 3 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ ((𝑛 + 1) ≀ (β™―β€˜πΉ) β†’ ({π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}))))
6968a2d 29 . 2 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ (((𝑛 + 1) ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)})) β†’ ((𝑛 + 1) ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}))))
7015, 69syld 47 1 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ ((𝑛 ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)})) β†’ ((𝑛 + 1) ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432   βŠ† wss 3947  βˆ…c0 4321  ifcif 4527  π’« cpw 4601  {cpr 4629  βŸ¨cop 4633   class class class wbr 5147   β†Ύ cres 5677   β€œ cima 5678  Fun wfun 6534  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  β„cr 11105  0cc0 11106  1c1 11107   + caddc 11109   ≀ cle 11245  2c2 12263  β„•0cn0 12468  β„€cz 12554  β„€β‰₯cuz 12818  ...cfz 13480  ..^cfzo 13623  β™―chash 14286   βˆ₯ cdvds 16193  Vtxcvtx 28245  iEdgciedg 28246  UPGraphcupgr 28329  VtxDegcvtxdg 28711  Walkscwlks 28842  EulerPathsceupth 29439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-xadd 13089  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-word 14461  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-vtx 28247  df-iedg 28248  df-edg 28297  df-uhgr 28307  df-ushgr 28308  df-upgr 28331  df-uspgr 28399  df-vtxdg 28712  df-wlks 28845  df-trls 28938  df-eupth 29440
This theorem is referenced by:  eupth2  29481
  Copyright terms: Public domain W3C validator