Step | Hyp | Ref
| Expression |
1 | | nn0re 12242 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℝ) |
2 | 1 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℝ) |
3 | 2 | lep1d 11906 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ≤ (𝑛 + 1)) |
4 | | peano2re 11148 |
. . . . . 6
⊢ (𝑛 ∈ ℝ → (𝑛 + 1) ∈
ℝ) |
5 | 2, 4 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑛 + 1) ∈
ℝ) |
6 | | eupth2.p |
. . . . . . . 8
⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
7 | | eupthiswlk 28576 |
. . . . . . . 8
⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
8 | | wlkcl 27982 |
. . . . . . . 8
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈
ℕ0) |
9 | 6, 7, 8 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (♯‘𝐹) ∈
ℕ0) |
10 | 9 | nn0red 12294 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐹) ∈
ℝ) |
11 | 10 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(♯‘𝐹) ∈
ℝ) |
12 | | letr 11069 |
. . . . 5
⊢ ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧
(♯‘𝐹) ∈
ℝ) → ((𝑛 ≤
(𝑛 + 1) ∧ (𝑛 + 1) ≤ (♯‘𝐹)) → 𝑛 ≤ (♯‘𝐹))) |
13 | 2, 5, 11, 12 | syl3anc 1370 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (𝑛 + 1) ∧ (𝑛 + 1) ≤ (♯‘𝐹)) → 𝑛 ≤ (♯‘𝐹))) |
14 | 3, 13 | mpand 692 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 1) ≤ (♯‘𝐹) → 𝑛 ≤ (♯‘𝐹))) |
15 | 14 | imim1d 82 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})))) |
16 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥) = ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑦)) |
17 | 16 | breq2d 5086 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥) ↔ 2 ∥ ((VtxDeg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑦))) |
18 | 17 | notbid 318 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥) ↔ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑦))) |
19 | 18 | elrab 3624 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} ↔ (𝑦 ∈ 𝑉 ∧ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑦))) |
20 | | eupth2.v |
. . . . . . . . 9
⊢ 𝑉 = (Vtx‘𝐺) |
21 | | eupth2.i |
. . . . . . . . 9
⊢ 𝐼 = (iEdg‘𝐺) |
22 | | eupth2.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ UPGraph) |
23 | 22 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → 𝐺 ∈ UPGraph) |
24 | | eupth2.f |
. . . . . . . . . 10
⊢ (𝜑 → Fun 𝐼) |
25 | 24 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → Fun 𝐼) |
26 | 6 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → 𝐹(EulerPaths‘𝐺)𝑃) |
27 | | eqid 2738 |
. . . . . . . . 9
⊢
〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))〉 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))〉 |
28 | | eqid 2738 |
. . . . . . . . 9
⊢
〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉 |
29 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
30 | 29 | ad2antrr 723 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → 𝑛 ∈ ℕ0) |
31 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑛 + 1) ≤ (♯‘𝐹)) |
32 | 31 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → (𝑛 + 1) ≤ (♯‘𝐹)) |
33 | | simpr 485 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) |
34 | | simplrr 775 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})) |
35 | 20, 21, 23, 25, 26, 27, 28, 30, 32, 33, 34 | eupth2lem3 28600 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) ∧ 𝑦 ∈ 𝑉) → (¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑦) ↔ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))) |
36 | 35 | pm5.32da 579 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → ((𝑦 ∈ 𝑉 ∧ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑦)) ↔ (𝑦 ∈ 𝑉 ∧ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))) |
37 | | 0elpw 5278 |
. . . . . . . . . . 11
⊢ ∅
∈ 𝒫 𝑉 |
38 | 20 | wlkepvtx 28028 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘(♯‘𝐹)) ∈ 𝑉)) |
39 | 38 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃‘0) ∈ 𝑉) |
40 | 6, 7, 39 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃‘0) ∈ 𝑉) |
41 | 40 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑃‘0) ∈ 𝑉) |
42 | 20 | wlkp 27983 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
43 | 6, 7, 42 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
44 | 43 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
45 | | peano2nn0 12273 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ0) |
46 | 45 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑛 + 1) ∈
ℕ0) |
47 | 46 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑛 + 1) ∈
ℕ0) |
48 | | nn0uz 12620 |
. . . . . . . . . . . . . . . . 17
⊢
ℕ0 = (ℤ≥‘0) |
49 | 47, 48 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑛 + 1) ∈
(ℤ≥‘0)) |
50 | 9 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (♯‘𝐹) ∈
ℕ0) |
51 | 50 | nn0zd 12424 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (♯‘𝐹) ∈ ℤ) |
52 | | elfz5 13248 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 + 1) ∈
(ℤ≥‘0) ∧ (♯‘𝐹) ∈ ℤ) → ((𝑛 + 1) ∈
(0...(♯‘𝐹))
↔ (𝑛 + 1) ≤
(♯‘𝐹))) |
53 | 49, 51, 52 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → ((𝑛 + 1) ∈ (0...(♯‘𝐹)) ↔ (𝑛 + 1) ≤ (♯‘𝐹))) |
54 | 31, 53 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑛 + 1) ∈ (0...(♯‘𝐹))) |
55 | 44, 54 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑃‘(𝑛 + 1)) ∈ 𝑉) |
56 | 41, 55 | prssd 4755 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → {(𝑃‘0), (𝑃‘(𝑛 + 1))} ⊆ 𝑉) |
57 | | prex 5355 |
. . . . . . . . . . . . 13
⊢ {(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ V |
58 | 57 | elpw 4537 |
. . . . . . . . . . . 12
⊢ ({(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ 𝒫 𝑉 ↔ {(𝑃‘0), (𝑃‘(𝑛 + 1))} ⊆ 𝑉) |
59 | 56, 58 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → {(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ 𝒫 𝑉) |
60 | | ifcl 4504 |
. . . . . . . . . . 11
⊢ ((∅
∈ 𝒫 𝑉 ∧
{(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ 𝒫 𝑉) → if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ∈ 𝒫 𝑉) |
61 | 37, 59, 60 | sylancr 587 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ∈ 𝒫 𝑉) |
62 | 61 | elpwid 4544 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ⊆ 𝑉) |
63 | 62 | sseld 3920 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) → 𝑦 ∈ 𝑉)) |
64 | 63 | pm4.71rd 563 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ↔ (𝑦 ∈ 𝑉 ∧ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))) |
65 | 36, 64 | bitr4d 281 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → ((𝑦 ∈ 𝑉 ∧ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑦)) ↔ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))) |
66 | 19, 65 | syl5bb 283 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → (𝑦 ∈ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} ↔ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))) |
67 | 66 | eqrdv 2736 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}))) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})) |
68 | 67 | exp32 421 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 1) ≤ (♯‘𝐹) → ({𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)}) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))) |
69 | 68 | a2d 29 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))) |
70 | 15, 69 | syld 47 |
1
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^𝑛)))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘𝑛), ∅, {(𝑃‘0), (𝑃‘𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥 ∈ 𝑉 ∣ ¬ 2 ∥
((VtxDeg‘〈𝑉,
(𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))〉)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))) |