MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lems Structured version   Visualization version   GIF version

Theorem eupth2lems 30000
Description: Lemma for eupth2 30001 (induction step): The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct, if the Eulerian path shortened by one edge has this property. Formerly part of proof for eupth2 30001. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v 𝑉 = (Vtxβ€˜πΊ)
eupth2.i 𝐼 = (iEdgβ€˜πΊ)
eupth2.g (πœ‘ β†’ 𝐺 ∈ UPGraph)
eupth2.f (πœ‘ β†’ Fun 𝐼)
eupth2.p (πœ‘ β†’ 𝐹(EulerPathsβ€˜πΊ)𝑃)
Assertion
Ref Expression
eupth2lems ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ ((𝑛 ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)})) β†’ ((𝑛 + 1) ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}))))
Distinct variable groups:   πœ‘,π‘₯   π‘₯,𝐹   π‘₯,𝐼   π‘₯,𝑉   π‘₯,𝑛
Allowed substitution hints:   πœ‘(𝑛)   𝑃(π‘₯,𝑛)   𝐹(𝑛)   𝐺(π‘₯,𝑛)   𝐼(𝑛)   𝑉(𝑛)

Proof of Theorem eupth2lems
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nn0re 12485 . . . . . 6 (𝑛 ∈ β„•0 β†’ 𝑛 ∈ ℝ)
21adantl 481 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ 𝑛 ∈ ℝ)
32lep1d 12149 . . . 4 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ 𝑛 ≀ (𝑛 + 1))
4 peano2re 11391 . . . . . 6 (𝑛 ∈ ℝ β†’ (𝑛 + 1) ∈ ℝ)
52, 4syl 17 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ (𝑛 + 1) ∈ ℝ)
6 eupth2.p . . . . . . . 8 (πœ‘ β†’ 𝐹(EulerPathsβ€˜πΊ)𝑃)
7 eupthiswlk 29974 . . . . . . . 8 (𝐹(EulerPathsβ€˜πΊ)𝑃 β†’ 𝐹(Walksβ€˜πΊ)𝑃)
8 wlkcl 29381 . . . . . . . 8 (𝐹(Walksβ€˜πΊ)𝑃 β†’ (β™―β€˜πΉ) ∈ β„•0)
96, 7, 83syl 18 . . . . . . 7 (πœ‘ β†’ (β™―β€˜πΉ) ∈ β„•0)
109nn0red 12537 . . . . . 6 (πœ‘ β†’ (β™―β€˜πΉ) ∈ ℝ)
1110adantr 480 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ (β™―β€˜πΉ) ∈ ℝ)
12 letr 11312 . . . . 5 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (β™―β€˜πΉ) ∈ ℝ) β†’ ((𝑛 ≀ (𝑛 + 1) ∧ (𝑛 + 1) ≀ (β™―β€˜πΉ)) β†’ 𝑛 ≀ (β™―β€˜πΉ)))
132, 5, 11, 12syl3anc 1368 . . . 4 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ ((𝑛 ≀ (𝑛 + 1) ∧ (𝑛 + 1) ≀ (β™―β€˜πΉ)) β†’ 𝑛 ≀ (β™―β€˜πΉ)))
143, 13mpand 692 . . 3 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ ((𝑛 + 1) ≀ (β™―β€˜πΉ) β†’ 𝑛 ≀ (β™―β€˜πΉ)))
1514imim1d 82 . 2 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ ((𝑛 ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)})) β†’ ((𝑛 + 1) ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))))
16 fveq2 6885 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯) = ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘¦))
1716breq2d 5153 . . . . . . . 8 (π‘₯ = 𝑦 β†’ (2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯) ↔ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘¦)))
1817notbid 318 . . . . . . 7 (π‘₯ = 𝑦 β†’ (Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯) ↔ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘¦)))
1918elrab 3678 . . . . . 6 (𝑦 ∈ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯)} ↔ (𝑦 ∈ 𝑉 ∧ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘¦)))
20 eupth2.v . . . . . . . . 9 𝑉 = (Vtxβ€˜πΊ)
21 eupth2.i . . . . . . . . 9 𝐼 = (iEdgβ€˜πΊ)
22 eupth2.g . . . . . . . . . 10 (πœ‘ β†’ 𝐺 ∈ UPGraph)
2322ad3antrrr 727 . . . . . . . . 9 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ 𝐺 ∈ UPGraph)
24 eupth2.f . . . . . . . . . 10 (πœ‘ β†’ Fun 𝐼)
2524ad3antrrr 727 . . . . . . . . 9 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ Fun 𝐼)
266ad3antrrr 727 . . . . . . . . 9 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ 𝐹(EulerPathsβ€˜πΊ)𝑃)
27 eqid 2726 . . . . . . . . 9 βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩ = βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩
28 eqid 2726 . . . . . . . . 9 βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩ = βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩
29 simpr 484 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ 𝑛 ∈ β„•0)
3029ad2antrr 723 . . . . . . . . 9 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ 𝑛 ∈ β„•0)
31 simprl 768 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (𝑛 + 1) ≀ (β™―β€˜πΉ))
3231adantr 480 . . . . . . . . 9 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ (𝑛 + 1) ≀ (β™―β€˜πΉ))
33 simpr 484 . . . . . . . . 9 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ 𝑦 ∈ 𝑉)
34 simplrr 775 . . . . . . . . 9 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))
3520, 21, 23, 25, 26, 27, 28, 30, 32, 33, 34eupth2lem3 29998 . . . . . . . 8 ((((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) ∧ 𝑦 ∈ 𝑉) β†’ (Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘¦) ↔ 𝑦 ∈ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))})))
3635pm5.32da 578 . . . . . . 7 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ ((𝑦 ∈ 𝑉 ∧ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘¦)) ↔ (𝑦 ∈ 𝑉 ∧ 𝑦 ∈ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}))))
37 0elpw 5347 . . . . . . . . . . 11 βˆ… ∈ 𝒫 𝑉
3820wlkepvtx 29426 . . . . . . . . . . . . . . . 16 (𝐹(Walksβ€˜πΊ)𝑃 β†’ ((π‘ƒβ€˜0) ∈ 𝑉 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) ∈ 𝑉))
3938simpld 494 . . . . . . . . . . . . . . 15 (𝐹(Walksβ€˜πΊ)𝑃 β†’ (π‘ƒβ€˜0) ∈ 𝑉)
406, 7, 393syl 18 . . . . . . . . . . . . . 14 (πœ‘ β†’ (π‘ƒβ€˜0) ∈ 𝑉)
4140ad2antrr 723 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (π‘ƒβ€˜0) ∈ 𝑉)
4220wlkp 29382 . . . . . . . . . . . . . . . 16 (𝐹(Walksβ€˜πΊ)𝑃 β†’ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰)
436, 7, 423syl 18 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰)
4443ad2antrr 723 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰)
45 peano2nn0 12516 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ β„•0 β†’ (𝑛 + 1) ∈ β„•0)
4645adantl 481 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ (𝑛 + 1) ∈ β„•0)
4746adantr 480 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (𝑛 + 1) ∈ β„•0)
48 nn0uz 12868 . . . . . . . . . . . . . . . . 17 β„•0 = (β„€β‰₯β€˜0)
4947, 48eleqtrdi 2837 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (𝑛 + 1) ∈ (β„€β‰₯β€˜0))
509ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (β™―β€˜πΉ) ∈ β„•0)
5150nn0zd 12588 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (β™―β€˜πΉ) ∈ β„€)
52 elfz5 13499 . . . . . . . . . . . . . . . 16 (((𝑛 + 1) ∈ (β„€β‰₯β€˜0) ∧ (β™―β€˜πΉ) ∈ β„€) β†’ ((𝑛 + 1) ∈ (0...(β™―β€˜πΉ)) ↔ (𝑛 + 1) ≀ (β™―β€˜πΉ)))
5349, 51, 52syl2anc 583 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ ((𝑛 + 1) ∈ (0...(β™―β€˜πΉ)) ↔ (𝑛 + 1) ≀ (β™―β€˜πΉ)))
5431, 53mpbird 257 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (𝑛 + 1) ∈ (0...(β™―β€˜πΉ)))
5544, 54ffvelcdmd 7081 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (π‘ƒβ€˜(𝑛 + 1)) ∈ 𝑉)
5641, 55prssd 4820 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))} βŠ† 𝑉)
57 prex 5425 . . . . . . . . . . . . 13 {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))} ∈ V
5857elpw 4601 . . . . . . . . . . . 12 ({(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))} ∈ 𝒫 𝑉 ↔ {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))} βŠ† 𝑉)
5956, 58sylibr 233 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))} ∈ 𝒫 𝑉)
60 ifcl 4568 . . . . . . . . . . 11 ((βˆ… ∈ 𝒫 𝑉 ∧ {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))} ∈ 𝒫 𝑉) β†’ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}) ∈ 𝒫 𝑉)
6137, 59, 60sylancr 586 . . . . . . . . . 10 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}) ∈ 𝒫 𝑉)
6261elpwid 4606 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}) βŠ† 𝑉)
6362sseld 3976 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (𝑦 ∈ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}) β†’ 𝑦 ∈ 𝑉))
6463pm4.71rd 562 . . . . . . 7 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (𝑦 ∈ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}) ↔ (𝑦 ∈ 𝑉 ∧ 𝑦 ∈ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}))))
6536, 64bitr4d 282 . . . . . 6 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ ((𝑦 ∈ 𝑉 ∧ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘¦)) ↔ 𝑦 ∈ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))})))
6619, 65bitrid 283 . . . . 5 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ (𝑦 ∈ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯)} ↔ 𝑦 ∈ if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))})))
6766eqrdv 2724 . . . 4 (((πœ‘ ∧ 𝑛 ∈ β„•0) ∧ ((𝑛 + 1) ≀ (β™―β€˜πΉ) ∧ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}))) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}))
6867exp32 420 . . 3 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ ((𝑛 + 1) ≀ (β™―β€˜πΉ) β†’ ({π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)}) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}))))
6968a2d 29 . 2 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ (((𝑛 + 1) ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)})) β†’ ((𝑛 + 1) ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}))))
7015, 69syld 47 1 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ ((𝑛 ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^𝑛)))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜π‘›), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜π‘›)})) β†’ ((𝑛 + 1) ≀ (β™―β€˜πΉ) β†’ {π‘₯ ∈ 𝑉 ∣ Β¬ 2 βˆ₯ ((VtxDegβ€˜βŸ¨π‘‰, (𝐼 β†Ύ (𝐹 β€œ (0..^(𝑛 + 1))))⟩)β€˜π‘₯)} = if((π‘ƒβ€˜0) = (π‘ƒβ€˜(𝑛 + 1)), βˆ…, {(π‘ƒβ€˜0), (π‘ƒβ€˜(𝑛 + 1))}))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  {crab 3426   βŠ† wss 3943  βˆ…c0 4317  ifcif 4523  π’« cpw 4597  {cpr 4625  βŸ¨cop 4629   class class class wbr 5141   β†Ύ cres 5671   β€œ cima 5672  Fun wfun 6531  βŸΆwf 6533  β€˜cfv 6537  (class class class)co 7405  β„cr 11111  0cc0 11112  1c1 11113   + caddc 11115   ≀ cle 11253  2c2 12271  β„•0cn0 12476  β„€cz 12562  β„€β‰₯cuz 12826  ...cfz 13490  ..^cfzo 13633  β™―chash 14295   βˆ₯ cdvds 16204  Vtxcvtx 28764  iEdgciedg 28765  UPGraphcupgr 28848  VtxDegcvtxdg 29231  Walkscwlks 29362  EulerPathsceupth 29959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1060  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-oadd 8471  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-rp 12981  df-xadd 13099  df-fz 13491  df-fzo 13634  df-seq 13973  df-exp 14033  df-hash 14296  df-word 14471  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-dvds 16205  df-vtx 28766  df-iedg 28767  df-edg 28816  df-uhgr 28826  df-ushgr 28827  df-upgr 28850  df-uspgr 28918  df-vtxdg 29232  df-wlks 29365  df-trls 29458  df-eupth 29960
This theorem is referenced by:  eupth2  30001
  Copyright terms: Public domain W3C validator