MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lems Structured version   Visualization version   GIF version

Theorem eupth2lems 29963
Description: Lemma for eupth2 29964 (induction step): The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct, if the Eulerian path shortened by one edge has this property. Formerly part of proof for eupth2 29964. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v 𝑉 = (Vtx‘𝐺)
eupth2.i 𝐼 = (iEdg‘𝐺)
eupth2.g (𝜑𝐺 ∈ UPGraph)
eupth2.f (𝜑 → Fun 𝐼)
eupth2.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
Assertion
Ref Expression
eupth2lems ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝑃(𝑥,𝑛)   𝐹(𝑛)   𝐺(𝑥,𝑛)   𝐼(𝑛)   𝑉(𝑛)

Proof of Theorem eupth2lems
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nn0re 12479 . . . . . 6 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
21adantl 481 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℝ)
32lep1d 12143 . . . 4 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ≤ (𝑛 + 1))
4 peano2re 11385 . . . . . 6 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
52, 4syl 17 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (𝑛 + 1) ∈ ℝ)
6 eupth2.p . . . . . . . 8 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
7 eupthiswlk 29937 . . . . . . . 8 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
8 wlkcl 29344 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
96, 7, 83syl 18 . . . . . . 7 (𝜑 → (♯‘𝐹) ∈ ℕ0)
109nn0red 12531 . . . . . 6 (𝜑 → (♯‘𝐹) ∈ ℝ)
1110adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (♯‘𝐹) ∈ ℝ)
12 letr 11306 . . . . 5 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ) → ((𝑛 ≤ (𝑛 + 1) ∧ (𝑛 + 1) ≤ (♯‘𝐹)) → 𝑛 ≤ (♯‘𝐹)))
132, 5, 11, 12syl3anc 1368 . . . 4 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ≤ (𝑛 + 1) ∧ (𝑛 + 1) ≤ (♯‘𝐹)) → 𝑛 ≤ (♯‘𝐹)))
143, 13mpand 692 . . 3 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) ≤ (♯‘𝐹) → 𝑛 ≤ (♯‘𝐹)))
1514imim1d 82 . 2 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))))
16 fveq2 6882 . . . . . . . . 9 (𝑥 = 𝑦 → ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥) = ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑦))
1716breq2d 5151 . . . . . . . 8 (𝑥 = 𝑦 → (2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥) ↔ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑦)))
1817notbid 318 . . . . . . 7 (𝑥 = 𝑦 → (¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑦)))
1918elrab 3676 . . . . . 6 (𝑦 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} ↔ (𝑦𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑦)))
20 eupth2.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
21 eupth2.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
22 eupth2.g . . . . . . . . . 10 (𝜑𝐺 ∈ UPGraph)
2322ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → 𝐺 ∈ UPGraph)
24 eupth2.f . . . . . . . . . 10 (𝜑 → Fun 𝐼)
2524ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → Fun 𝐼)
266ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → 𝐹(EulerPaths‘𝐺)𝑃)
27 eqid 2724 . . . . . . . . 9 𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩ = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩
28 eqid 2724 . . . . . . . . 9 𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩ = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩
29 simpr 484 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
3029ad2antrr 723 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → 𝑛 ∈ ℕ0)
31 simprl 768 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑛 + 1) ≤ (♯‘𝐹))
3231adantr 480 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → (𝑛 + 1) ≤ (♯‘𝐹))
33 simpr 484 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → 𝑦𝑉)
34 simplrr 775 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))
3520, 21, 23, 25, 26, 27, 28, 30, 32, 33, 34eupth2lem3 29961 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) ∧ 𝑦𝑉) → (¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑦) ↔ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))
3635pm5.32da 578 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → ((𝑦𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑦)) ↔ (𝑦𝑉𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
37 0elpw 5345 . . . . . . . . . . 11 ∅ ∈ 𝒫 𝑉
3820wlkepvtx 29389 . . . . . . . . . . . . . . . 16 (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘(♯‘𝐹)) ∈ 𝑉))
3938simpld 494 . . . . . . . . . . . . . . 15 (𝐹(Walks‘𝐺)𝑃 → (𝑃‘0) ∈ 𝑉)
406, 7, 393syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑃‘0) ∈ 𝑉)
4140ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑃‘0) ∈ 𝑉)
4220wlkp 29345 . . . . . . . . . . . . . . . 16 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
436, 7, 423syl 18 . . . . . . . . . . . . . . 15 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
4443ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → 𝑃:(0...(♯‘𝐹))⟶𝑉)
45 peano2nn0 12510 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
4645adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ ℕ0) → (𝑛 + 1) ∈ ℕ0)
4746adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑛 + 1) ∈ ℕ0)
48 nn0uz 12862 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
4947, 48eleqtrdi 2835 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑛 + 1) ∈ (ℤ‘0))
509ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (♯‘𝐹) ∈ ℕ0)
5150nn0zd 12582 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (♯‘𝐹) ∈ ℤ)
52 elfz5 13491 . . . . . . . . . . . . . . . 16 (((𝑛 + 1) ∈ (ℤ‘0) ∧ (♯‘𝐹) ∈ ℤ) → ((𝑛 + 1) ∈ (0...(♯‘𝐹)) ↔ (𝑛 + 1) ≤ (♯‘𝐹)))
5349, 51, 52syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → ((𝑛 + 1) ∈ (0...(♯‘𝐹)) ↔ (𝑛 + 1) ≤ (♯‘𝐹)))
5431, 53mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑛 + 1) ∈ (0...(♯‘𝐹)))
5544, 54ffvelcdmd 7078 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑃‘(𝑛 + 1)) ∈ 𝑉)
5641, 55prssd 4818 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → {(𝑃‘0), (𝑃‘(𝑛 + 1))} ⊆ 𝑉)
57 prex 5423 . . . . . . . . . . . . 13 {(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ V
5857elpw 4599 . . . . . . . . . . . 12 ({(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ 𝒫 𝑉 ↔ {(𝑃‘0), (𝑃‘(𝑛 + 1))} ⊆ 𝑉)
5956, 58sylibr 233 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → {(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ 𝒫 𝑉)
60 ifcl 4566 . . . . . . . . . . 11 ((∅ ∈ 𝒫 𝑉 ∧ {(𝑃‘0), (𝑃‘(𝑛 + 1))} ∈ 𝒫 𝑉) → if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ∈ 𝒫 𝑉)
6137, 59, 60sylancr 586 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ∈ 𝒫 𝑉)
6261elpwid 4604 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ⊆ 𝑉)
6362sseld 3974 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) → 𝑦𝑉))
6463pm4.71rd 562 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}) ↔ (𝑦𝑉𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
6536, 64bitr4d 282 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → ((𝑦𝑉 ∧ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑦)) ↔ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))
6619, 65bitrid 283 . . . . 5 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → (𝑦 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} ↔ 𝑦 ∈ if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))})))
6766eqrdv 2722 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ ((𝑛 + 1) ≤ (♯‘𝐹) ∧ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}))) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))
6867exp32 420 . . 3 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) ≤ (♯‘𝐹) → ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)}) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
6968a2d 29 . 2 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
7015, 69syld 47 1 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑛)))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃𝑛), ∅, {(𝑃‘0), (𝑃𝑛)})) → ((𝑛 + 1) ≤ (♯‘𝐹) → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑛 + 1))))⟩)‘𝑥)} = if((𝑃‘0) = (𝑃‘(𝑛 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑛 + 1))}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  {crab 3424  wss 3941  c0 4315  ifcif 4521  𝒫 cpw 4595  {cpr 4623  cop 4627   class class class wbr 5139  cres 5669  cima 5670  Fun wfun 6528  wf 6530  cfv 6534  (class class class)co 7402  cr 11106  0cc0 11107  1c1 11108   + caddc 11110  cle 11247  2c2 12265  0cn0 12470  cz 12556  cuz 12820  ...cfz 13482  ..^cfzo 13625  chash 14288  cdvds 16196  Vtxcvtx 28728  iEdgciedg 28729  UPGraphcupgr 28812  VtxDegcvtxdg 29194  Walkscwlks 29325  EulerPathsceupth 29922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1060  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-dju 9893  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-n0 12471  df-xnn0 12543  df-z 12557  df-uz 12821  df-rp 12973  df-xadd 13091  df-fz 13483  df-fzo 13626  df-seq 13965  df-exp 14026  df-hash 14289  df-word 14463  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-dvds 16197  df-vtx 28730  df-iedg 28731  df-edg 28780  df-uhgr 28790  df-ushgr 28791  df-upgr 28814  df-uspgr 28882  df-vtxdg 29195  df-wlks 29328  df-trls 29421  df-eupth 29923
This theorem is referenced by:  eupth2  29964
  Copyright terms: Public domain W3C validator