| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eucrct2eupth1 | Structured version Visualization version GIF version | ||
| Description: Removing one edge (𝐼‘(𝐹‘𝑁)) from a nonempty graph 𝐺 with an Eulerian circuit 〈𝐹, 𝑃〉 results in a graph 𝑆 with an Eulerian path 〈𝐻, 𝑄〉. This is the special case of eucrct2eupth 30193 (with 𝐽 = (𝑁 − 1)) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
| Ref | Expression |
|---|---|
| eucrct2eupth1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| eucrct2eupth1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| eucrct2eupth1.d | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
| eucrct2eupth1.c | ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) |
| eucrct2eupth1.s | ⊢ (Vtx‘𝑆) = 𝑉 |
| eucrct2eupth1.g | ⊢ (𝜑 → 0 < (♯‘𝐹)) |
| eucrct2eupth1.n | ⊢ (𝜑 → 𝑁 = ((♯‘𝐹) − 1)) |
| eucrct2eupth1.e | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| eucrct2eupth1.h | ⊢ 𝐻 = (𝐹 prefix 𝑁) |
| eucrct2eupth1.q | ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
| Ref | Expression |
|---|---|
| eucrct2eupth1 | ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eucrct2eupth1.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eucrct2eupth1.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | eucrct2eupth1.d | . 2 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
| 4 | eucrct2eupth1.n | . . 3 ⊢ (𝜑 → 𝑁 = ((♯‘𝐹) − 1)) | |
| 5 | eucrct2eupth1.g | . . . . 5 ⊢ (𝜑 → 0 < (♯‘𝐹)) | |
| 6 | eupthiswlk 30160 | . . . . . 6 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 7 | wlkcl 29562 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 8 | nn0z 12621 | . . . . . . . . 9 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ) | |
| 9 | 8 | anim1i 615 | . . . . . . . 8 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹))) |
| 10 | elnnz 12606 | . . . . . . . 8 ⊢ ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹))) | |
| 11 | 9, 10 | sylibr 234 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ) |
| 12 | 11 | ex 412 | . . . . . 6 ⊢ ((♯‘𝐹) ∈ ℕ0 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ)) |
| 13 | 3, 6, 7, 12 | 4syl 19 | . . . . 5 ⊢ (𝜑 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ)) |
| 14 | 5, 13 | mpd 15 | . . . 4 ⊢ (𝜑 → (♯‘𝐹) ∈ ℕ) |
| 15 | fzo0end 13779 | . . . 4 ⊢ ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) |
| 17 | 4, 16 | eqeltrd 2833 | . 2 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| 18 | eucrct2eupth1.e | . 2 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
| 19 | eucrct2eupth1.h | . 2 ⊢ 𝐻 = (𝐹 prefix 𝑁) | |
| 20 | eucrct2eupth1.q | . 2 ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) | |
| 21 | eucrct2eupth1.s | . 2 ⊢ (Vtx‘𝑆) = 𝑉 | |
| 22 | 1, 2, 3, 17, 18, 19, 20, 21 | eupthres 30163 | 1 ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ↾ cres 5667 “ cima 5668 ‘cfv 6541 (class class class)co 7413 0cc0 11137 1c1 11138 < clt 11277 − cmin 11474 ℕcn 12248 ℕ0cn0 12509 ℤcz 12596 ...cfz 13529 ..^cfzo 13676 ♯chash 14352 prefix cpfx 14691 Vtxcvtx 28942 iEdgciedg 28943 Walkscwlks 29543 Circuitsccrcts 29733 EulerPathsceupth 30145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 df-hash 14353 df-word 14536 df-substr 14662 df-pfx 14692 df-wlks 29546 df-trls 29639 df-eupth 30146 |
| This theorem is referenced by: eucrct2eupth 30193 |
| Copyright terms: Public domain | W3C validator |