![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eucrct2eupth1 | Structured version Visualization version GIF version |
Description: Removing one edge (πΌβ(πΉβπ)) from a nonempty graph πΊ with an Eulerian circuit β¨πΉ, πβ© results in a graph π with an Eulerian path β¨π», πβ©. This is the special case of eucrct2eupth 29192 (with π½ = (π β 1)) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
Ref | Expression |
---|---|
eucrct2eupth1.v | β’ π = (VtxβπΊ) |
eucrct2eupth1.i | β’ πΌ = (iEdgβπΊ) |
eucrct2eupth1.d | β’ (π β πΉ(EulerPathsβπΊ)π) |
eucrct2eupth1.c | β’ (π β πΉ(CircuitsβπΊ)π) |
eucrct2eupth1.s | β’ (Vtxβπ) = π |
eucrct2eupth1.g | β’ (π β 0 < (β―βπΉ)) |
eucrct2eupth1.n | β’ (π β π = ((β―βπΉ) β 1)) |
eucrct2eupth1.e | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) |
eucrct2eupth1.h | β’ π» = (πΉ prefix π) |
eucrct2eupth1.q | β’ π = (π βΎ (0...π)) |
Ref | Expression |
---|---|
eucrct2eupth1 | β’ (π β π»(EulerPathsβπ)π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eucrct2eupth1.v | . 2 β’ π = (VtxβπΊ) | |
2 | eucrct2eupth1.i | . 2 β’ πΌ = (iEdgβπΊ) | |
3 | eucrct2eupth1.d | . 2 β’ (π β πΉ(EulerPathsβπΊ)π) | |
4 | eucrct2eupth1.n | . . 3 β’ (π β π = ((β―βπΉ) β 1)) | |
5 | eucrct2eupth1.g | . . . . 5 β’ (π β 0 < (β―βπΉ)) | |
6 | eupthiswlk 29159 | . . . . . 6 β’ (πΉ(EulerPathsβπΊ)π β πΉ(WalksβπΊ)π) | |
7 | wlkcl 28566 | . . . . . . 7 β’ (πΉ(WalksβπΊ)π β (β―βπΉ) β β0) | |
8 | nn0z 12525 | . . . . . . . . . 10 β’ ((β―βπΉ) β β0 β (β―βπΉ) β β€) | |
9 | 8 | anim1i 616 | . . . . . . . . 9 β’ (((β―βπΉ) β β0 β§ 0 < (β―βπΉ)) β ((β―βπΉ) β β€ β§ 0 < (β―βπΉ))) |
10 | elnnz 12510 | . . . . . . . . 9 β’ ((β―βπΉ) β β β ((β―βπΉ) β β€ β§ 0 < (β―βπΉ))) | |
11 | 9, 10 | sylibr 233 | . . . . . . . 8 β’ (((β―βπΉ) β β0 β§ 0 < (β―βπΉ)) β (β―βπΉ) β β) |
12 | 11 | ex 414 | . . . . . . 7 β’ ((β―βπΉ) β β0 β (0 < (β―βπΉ) β (β―βπΉ) β β)) |
13 | 7, 12 | syl 17 | . . . . . 6 β’ (πΉ(WalksβπΊ)π β (0 < (β―βπΉ) β (β―βπΉ) β β)) |
14 | 3, 6, 13 | 3syl 18 | . . . . 5 β’ (π β (0 < (β―βπΉ) β (β―βπΉ) β β)) |
15 | 5, 14 | mpd 15 | . . . 4 β’ (π β (β―βπΉ) β β) |
16 | fzo0end 13665 | . . . 4 β’ ((β―βπΉ) β β β ((β―βπΉ) β 1) β (0..^(β―βπΉ))) | |
17 | 15, 16 | syl 17 | . . 3 β’ (π β ((β―βπΉ) β 1) β (0..^(β―βπΉ))) |
18 | 4, 17 | eqeltrd 2838 | . 2 β’ (π β π β (0..^(β―βπΉ))) |
19 | eucrct2eupth1.e | . 2 β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) | |
20 | eucrct2eupth1.h | . 2 β’ π» = (πΉ prefix π) | |
21 | eucrct2eupth1.q | . 2 β’ π = (π βΎ (0...π)) | |
22 | eucrct2eupth1.s | . 2 β’ (Vtxβπ) = π | |
23 | 1, 2, 3, 18, 19, 20, 21, 22 | eupthres 29162 | 1 β’ (π β π»(EulerPathsβπ)π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 class class class wbr 5106 βΎ cres 5636 β cima 5637 βcfv 6497 (class class class)co 7358 0cc0 11052 1c1 11053 < clt 11190 β cmin 11386 βcn 12154 β0cn0 12414 β€cz 12500 ...cfz 13425 ..^cfzo 13568 β―chash 14231 prefix cpfx 14559 Vtxcvtx 27950 iEdgciedg 27951 Walkscwlks 28547 Circuitsccrcts 28735 EulerPathsceupth 29144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ifp 1063 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8649 df-map 8768 df-pm 8769 df-en 8885 df-dom 8886 df-sdom 8887 df-fin 8888 df-card 9876 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-nn 12155 df-n0 12415 df-z 12501 df-uz 12765 df-fz 13426 df-fzo 13569 df-hash 14232 df-word 14404 df-substr 14530 df-pfx 14560 df-wlks 28550 df-trls 28643 df-eupth 29145 |
This theorem is referenced by: eucrct2eupth 29192 |
Copyright terms: Public domain | W3C validator |