MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucrct2eupth1 Structured version   Visualization version   GIF version

Theorem eucrct2eupth1 28327
Description: Removing one edge (𝐼‘(𝐹𝑁)) from a nonempty graph 𝐺 with an Eulerian circuit 𝐹, 𝑃 results in a graph 𝑆 with an Eulerian path 𝐻, 𝑄. This is the special case of eucrct2eupth 28328 (with 𝐽 = (𝑁 − 1)) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
eucrct2eupth1.v 𝑉 = (Vtx‘𝐺)
eucrct2eupth1.i 𝐼 = (iEdg‘𝐺)
eucrct2eupth1.d (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eucrct2eupth1.c (𝜑𝐹(Circuits‘𝐺)𝑃)
eucrct2eupth1.s (Vtx‘𝑆) = 𝑉
eucrct2eupth1.g (𝜑 → 0 < (♯‘𝐹))
eucrct2eupth1.n (𝜑𝑁 = ((♯‘𝐹) − 1))
eucrct2eupth1.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
eucrct2eupth1.h 𝐻 = (𝐹 prefix 𝑁)
eucrct2eupth1.q 𝑄 = (𝑃 ↾ (0...𝑁))
Assertion
Ref Expression
eucrct2eupth1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)

Proof of Theorem eucrct2eupth1
StepHypRef Expression
1 eucrct2eupth1.v . 2 𝑉 = (Vtx‘𝐺)
2 eucrct2eupth1.i . 2 𝐼 = (iEdg‘𝐺)
3 eucrct2eupth1.d . 2 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
4 eucrct2eupth1.n . . 3 (𝜑𝑁 = ((♯‘𝐹) − 1))
5 eucrct2eupth1.g . . . . 5 (𝜑 → 0 < (♯‘𝐹))
6 eupthiswlk 28295 . . . . . 6 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
7 wlkcl 27703 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
8 nn0z 12200 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
98anim1i 618 . . . . . . . . 9 (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹)))
10 elnnz 12186 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹)))
119, 10sylibr 237 . . . . . . . 8 (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ)
1211ex 416 . . . . . . 7 ((♯‘𝐹) ∈ ℕ0 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ))
137, 12syl 17 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ))
143, 6, 133syl 18 . . . . 5 (𝜑 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ))
155, 14mpd 15 . . . 4 (𝜑 → (♯‘𝐹) ∈ ℕ)
16 fzo0end 13334 . . . 4 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
1715, 16syl 17 . . 3 (𝜑 → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
184, 17eqeltrd 2838 . 2 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
19 eucrct2eupth1.e . 2 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
20 eucrct2eupth1.h . 2 𝐻 = (𝐹 prefix 𝑁)
21 eucrct2eupth1.q . 2 𝑄 = (𝑃 ↾ (0...𝑁))
22 eucrct2eupth1.s . 2 (Vtx‘𝑆) = 𝑉
231, 2, 3, 18, 19, 20, 21, 22eupthres 28298 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110   class class class wbr 5053  cres 5553  cima 5554  cfv 6380  (class class class)co 7213  0cc0 10729  1c1 10730   < clt 10867  cmin 11062  cn 11830  0cn0 12090  cz 12176  ...cfz 13095  ..^cfzo 13238  chash 13896   prefix cpfx 14235  Vtxcvtx 27087  iEdgciedg 27088  Walkscwlks 27684  Circuitsccrcts 27871  EulerPathsceupth 28280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-hash 13897  df-word 14070  df-substr 14206  df-pfx 14236  df-wlks 27687  df-trls 27780  df-eupth 28281
This theorem is referenced by:  eucrct2eupth  28328
  Copyright terms: Public domain W3C validator