Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eucrct2eupth1 | Structured version Visualization version GIF version |
Description: Removing one edge (𝐼‘(𝐹‘𝑁)) from a nonempty graph 𝐺 with an Eulerian circuit 〈𝐹, 𝑃〉 results in a graph 𝑆 with an Eulerian path 〈𝐻, 𝑄〉. This is the special case of eucrct2eupth 28328 (with 𝐽 = (𝑁 − 1)) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
Ref | Expression |
---|---|
eucrct2eupth1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
eucrct2eupth1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
eucrct2eupth1.d | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
eucrct2eupth1.c | ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) |
eucrct2eupth1.s | ⊢ (Vtx‘𝑆) = 𝑉 |
eucrct2eupth1.g | ⊢ (𝜑 → 0 < (♯‘𝐹)) |
eucrct2eupth1.n | ⊢ (𝜑 → 𝑁 = ((♯‘𝐹) − 1)) |
eucrct2eupth1.e | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
eucrct2eupth1.h | ⊢ 𝐻 = (𝐹 prefix 𝑁) |
eucrct2eupth1.q | ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
Ref | Expression |
---|---|
eucrct2eupth1 | ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eucrct2eupth1.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eucrct2eupth1.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | eucrct2eupth1.d | . 2 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
4 | eucrct2eupth1.n | . . 3 ⊢ (𝜑 → 𝑁 = ((♯‘𝐹) − 1)) | |
5 | eucrct2eupth1.g | . . . . 5 ⊢ (𝜑 → 0 < (♯‘𝐹)) | |
6 | eupthiswlk 28295 | . . . . . 6 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
7 | wlkcl 27703 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
8 | nn0z 12200 | . . . . . . . . . 10 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ) | |
9 | 8 | anim1i 618 | . . . . . . . . 9 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹))) |
10 | elnnz 12186 | . . . . . . . . 9 ⊢ ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹))) | |
11 | 9, 10 | sylibr 237 | . . . . . . . 8 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ) |
12 | 11 | ex 416 | . . . . . . 7 ⊢ ((♯‘𝐹) ∈ ℕ0 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ)) |
13 | 7, 12 | syl 17 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ)) |
14 | 3, 6, 13 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ)) |
15 | 5, 14 | mpd 15 | . . . 4 ⊢ (𝜑 → (♯‘𝐹) ∈ ℕ) |
16 | fzo0end 13334 | . . . 4 ⊢ ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) |
18 | 4, 17 | eqeltrd 2838 | . 2 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
19 | eucrct2eupth1.e | . 2 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
20 | eucrct2eupth1.h | . 2 ⊢ 𝐻 = (𝐹 prefix 𝑁) | |
21 | eucrct2eupth1.q | . 2 ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) | |
22 | eucrct2eupth1.s | . 2 ⊢ (Vtx‘𝑆) = 𝑉 | |
23 | 1, 2, 3, 18, 19, 20, 21, 22 | eupthres 28298 | 1 ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ↾ cres 5553 “ cima 5554 ‘cfv 6380 (class class class)co 7213 0cc0 10729 1c1 10730 < clt 10867 − cmin 11062 ℕcn 11830 ℕ0cn0 12090 ℤcz 12176 ...cfz 13095 ..^cfzo 13238 ♯chash 13896 prefix cpfx 14235 Vtxcvtx 27087 iEdgciedg 27088 Walkscwlks 27684 Circuitsccrcts 27871 EulerPathsceupth 28280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-pm 8511 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-hash 13897 df-word 14070 df-substr 14206 df-pfx 14236 df-wlks 27687 df-trls 27780 df-eupth 28281 |
This theorem is referenced by: eucrct2eupth 28328 |
Copyright terms: Public domain | W3C validator |