Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucrct2eupth1 Structured version   Visualization version   GIF version

Theorem eucrct2eupth1 28036
 Description: Removing one edge (𝐼‘(𝐹‘𝑁)) from a nonempty graph 𝐺 with an Eulerian circuit ⟨𝐹, 𝑃⟩ results in a graph 𝑆 with an Eulerian path ⟨𝐻, 𝑄⟩. This is the special case of eucrct2eupth 28037 (with 𝐽 = (𝑁 − 1)) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
eucrct2eupth1.v 𝑉 = (Vtx‘𝐺)
eucrct2eupth1.i 𝐼 = (iEdg‘𝐺)
eucrct2eupth1.d (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eucrct2eupth1.c (𝜑𝐹(Circuits‘𝐺)𝑃)
eucrct2eupth1.s (Vtx‘𝑆) = 𝑉
eucrct2eupth1.g (𝜑 → 0 < (♯‘𝐹))
eucrct2eupth1.n (𝜑𝑁 = ((♯‘𝐹) − 1))
eucrct2eupth1.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
eucrct2eupth1.h 𝐻 = (𝐹 prefix 𝑁)
eucrct2eupth1.q 𝑄 = (𝑃 ↾ (0...𝑁))
Assertion
Ref Expression
eucrct2eupth1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)

Proof of Theorem eucrct2eupth1
StepHypRef Expression
1 eucrct2eupth1.v . 2 𝑉 = (Vtx‘𝐺)
2 eucrct2eupth1.i . 2 𝐼 = (iEdg‘𝐺)
3 eucrct2eupth1.d . 2 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
4 eucrct2eupth1.n . . 3 (𝜑𝑁 = ((♯‘𝐹) − 1))
5 eucrct2eupth1.g . . . . 5 (𝜑 → 0 < (♯‘𝐹))
6 eupthiswlk 28004 . . . . . 6 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
7 wlkcl 27412 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
8 nn0z 11995 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
98anim1i 617 . . . . . . . . 9 (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹)))
10 elnnz 11981 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹)))
119, 10sylibr 237 . . . . . . . 8 (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ)
1211ex 416 . . . . . . 7 ((♯‘𝐹) ∈ ℕ0 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ))
137, 12syl 17 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ))
143, 6, 133syl 18 . . . . 5 (𝜑 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ))
155, 14mpd 15 . . . 4 (𝜑 → (♯‘𝐹) ∈ ℕ)
16 fzo0end 13126 . . . 4 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
1715, 16syl 17 . . 3 (𝜑 → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
184, 17eqeltrd 2890 . 2 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
19 eucrct2eupth1.e . 2 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
20 eucrct2eupth1.h . 2 𝐻 = (𝐹 prefix 𝑁)
21 eucrct2eupth1.q . 2 𝑄 = (𝑃 ↾ (0...𝑁))
22 eucrct2eupth1.s . 2 (Vtx‘𝑆) = 𝑉
231, 2, 3, 18, 19, 20, 21, 22eupthres 28007 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   class class class wbr 5030   ↾ cres 5521   “ cima 5522  ‘cfv 6324  (class class class)co 7135  0cc0 10528  1c1 10529   < clt 10666   − cmin 10861  ℕcn 11627  ℕ0cn0 11887  ℤcz 11971  ...cfz 12887  ..^cfzo 13030  ♯chash 13688   prefix cpfx 14025  Vtxcvtx 26796  iEdgciedg 26797  Walkscwlks 27393  Circuitsccrcts 27580  EulerPathsceupth 27989 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-map 8393  df-pm 8394  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-n0 11888  df-z 11972  df-uz 12234  df-fz 12888  df-fzo 13031  df-hash 13689  df-word 13860  df-substr 13996  df-pfx 14026  df-wlks 27396  df-trls 27489  df-eupth 27990 This theorem is referenced by:  eucrct2eupth  28037
 Copyright terms: Public domain W3C validator