MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucrct2eupth1 Structured version   Visualization version   GIF version

Theorem eucrct2eupth1 30188
Description: Removing one edge (𝐼‘(𝐹𝑁)) from a nonempty graph 𝐺 with an Eulerian circuit 𝐹, 𝑃 results in a graph 𝑆 with an Eulerian path 𝐻, 𝑄. This is the special case of eucrct2eupth 30189 (with 𝐽 = (𝑁 − 1)) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
eucrct2eupth1.v 𝑉 = (Vtx‘𝐺)
eucrct2eupth1.i 𝐼 = (iEdg‘𝐺)
eucrct2eupth1.d (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eucrct2eupth1.c (𝜑𝐹(Circuits‘𝐺)𝑃)
eucrct2eupth1.s (Vtx‘𝑆) = 𝑉
eucrct2eupth1.g (𝜑 → 0 < (♯‘𝐹))
eucrct2eupth1.n (𝜑𝑁 = ((♯‘𝐹) − 1))
eucrct2eupth1.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
eucrct2eupth1.h 𝐻 = (𝐹 prefix 𝑁)
eucrct2eupth1.q 𝑄 = (𝑃 ↾ (0...𝑁))
Assertion
Ref Expression
eucrct2eupth1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)

Proof of Theorem eucrct2eupth1
StepHypRef Expression
1 eucrct2eupth1.v . 2 𝑉 = (Vtx‘𝐺)
2 eucrct2eupth1.i . 2 𝐼 = (iEdg‘𝐺)
3 eucrct2eupth1.d . 2 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
4 eucrct2eupth1.n . . 3 (𝜑𝑁 = ((♯‘𝐹) − 1))
5 eucrct2eupth1.g . . . . 5 (𝜑 → 0 < (♯‘𝐹))
6 eupthiswlk 30156 . . . . . 6 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
7 wlkcl 29561 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
8 nn0z 12496 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
98anim1i 615 . . . . . . . 8 (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹)))
10 elnnz 12481 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹)))
119, 10sylibr 234 . . . . . . 7 (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ)
1211ex 412 . . . . . 6 ((♯‘𝐹) ∈ ℕ0 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ))
133, 6, 7, 124syl 19 . . . . 5 (𝜑 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ))
145, 13mpd 15 . . . 4 (𝜑 → (♯‘𝐹) ∈ ℕ)
15 fzo0end 13661 . . . 4 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
1614, 15syl 17 . . 3 (𝜑 → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
174, 16eqeltrd 2828 . 2 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
18 eucrct2eupth1.e . 2 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
19 eucrct2eupth1.h . 2 𝐻 = (𝐹 prefix 𝑁)
20 eucrct2eupth1.q . 2 𝑄 = (𝑃 ↾ (0...𝑁))
21 eucrct2eupth1.s . 2 (Vtx‘𝑆) = 𝑉
221, 2, 3, 17, 18, 19, 20, 21eupthres 30159 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  cres 5621  cima 5622  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   < clt 11149  cmin 11347  cn 12128  0cn0 12384  cz 12471  ...cfz 13410  ..^cfzo 13557  chash 14237   prefix cpfx 14577  Vtxcvtx 28941  iEdgciedg 28942  Walkscwlks 29542  Circuitsccrcts 29729  EulerPathsceupth 30141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-substr 14548  df-pfx 14578  df-wlks 29545  df-trls 29636  df-eupth 30142
This theorem is referenced by:  eucrct2eupth  30189
  Copyright terms: Public domain W3C validator