![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eucrct2eupth1 | Structured version Visualization version GIF version |
Description: Removing one edge (πΌβ(πΉβπ)) from a nonempty graph πΊ with an Eulerian circuit β¨πΉ, πβ© results in a graph π with an Eulerian path β¨π», πβ©. This is the special case of eucrct2eupth 30042 (with π½ = (π β 1)) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
Ref | Expression |
---|---|
eucrct2eupth1.v | β’ π = (VtxβπΊ) |
eucrct2eupth1.i | β’ πΌ = (iEdgβπΊ) |
eucrct2eupth1.d | β’ (π β πΉ(EulerPathsβπΊ)π) |
eucrct2eupth1.c | β’ (π β πΉ(CircuitsβπΊ)π) |
eucrct2eupth1.s | β’ (Vtxβπ) = π |
eucrct2eupth1.g | β’ (π β 0 < (β―βπΉ)) |
eucrct2eupth1.n | β’ (π β π = ((β―βπΉ) β 1)) |
eucrct2eupth1.e | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) |
eucrct2eupth1.h | β’ π» = (πΉ prefix π) |
eucrct2eupth1.q | β’ π = (π βΎ (0...π)) |
Ref | Expression |
---|---|
eucrct2eupth1 | β’ (π β π»(EulerPathsβπ)π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eucrct2eupth1.v | . 2 β’ π = (VtxβπΊ) | |
2 | eucrct2eupth1.i | . 2 β’ πΌ = (iEdgβπΊ) | |
3 | eucrct2eupth1.d | . 2 β’ (π β πΉ(EulerPathsβπΊ)π) | |
4 | eucrct2eupth1.n | . . 3 β’ (π β π = ((β―βπΉ) β 1)) | |
5 | eucrct2eupth1.g | . . . . 5 β’ (π β 0 < (β―βπΉ)) | |
6 | eupthiswlk 30009 | . . . . . 6 β’ (πΉ(EulerPathsβπΊ)π β πΉ(WalksβπΊ)π) | |
7 | wlkcl 29416 | . . . . . . 7 β’ (πΉ(WalksβπΊ)π β (β―βπΉ) β β0) | |
8 | nn0z 12605 | . . . . . . . . . 10 β’ ((β―βπΉ) β β0 β (β―βπΉ) β β€) | |
9 | 8 | anim1i 614 | . . . . . . . . 9 β’ (((β―βπΉ) β β0 β§ 0 < (β―βπΉ)) β ((β―βπΉ) β β€ β§ 0 < (β―βπΉ))) |
10 | elnnz 12590 | . . . . . . . . 9 β’ ((β―βπΉ) β β β ((β―βπΉ) β β€ β§ 0 < (β―βπΉ))) | |
11 | 9, 10 | sylibr 233 | . . . . . . . 8 β’ (((β―βπΉ) β β0 β§ 0 < (β―βπΉ)) β (β―βπΉ) β β) |
12 | 11 | ex 412 | . . . . . . 7 β’ ((β―βπΉ) β β0 β (0 < (β―βπΉ) β (β―βπΉ) β β)) |
13 | 7, 12 | syl 17 | . . . . . 6 β’ (πΉ(WalksβπΊ)π β (0 < (β―βπΉ) β (β―βπΉ) β β)) |
14 | 3, 6, 13 | 3syl 18 | . . . . 5 β’ (π β (0 < (β―βπΉ) β (β―βπΉ) β β)) |
15 | 5, 14 | mpd 15 | . . . 4 β’ (π β (β―βπΉ) β β) |
16 | fzo0end 13748 | . . . 4 β’ ((β―βπΉ) β β β ((β―βπΉ) β 1) β (0..^(β―βπΉ))) | |
17 | 15, 16 | syl 17 | . . 3 β’ (π β ((β―βπΉ) β 1) β (0..^(β―βπΉ))) |
18 | 4, 17 | eqeltrd 2828 | . 2 β’ (π β π β (0..^(β―βπΉ))) |
19 | eucrct2eupth1.e | . 2 β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) | |
20 | eucrct2eupth1.h | . 2 β’ π» = (πΉ prefix π) | |
21 | eucrct2eupth1.q | . 2 β’ π = (π βΎ (0...π)) | |
22 | eucrct2eupth1.s | . 2 β’ (Vtxβπ) = π | |
23 | 1, 2, 3, 18, 19, 20, 21, 22 | eupthres 30012 | 1 β’ (π β π»(EulerPathsβπ)π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 class class class wbr 5142 βΎ cres 5674 β cima 5675 βcfv 6542 (class class class)co 7414 0cc0 11130 1c1 11131 < clt 11270 β cmin 11466 βcn 12234 β0cn0 12494 β€cz 12580 ...cfz 13508 ..^cfzo 13651 β―chash 14313 prefix cpfx 14644 Vtxcvtx 28796 iEdgciedg 28797 Walkscwlks 29397 Circuitsccrcts 29585 EulerPathsceupth 29994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ifp 1062 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8838 df-pm 8839 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 df-fzo 13652 df-hash 14314 df-word 14489 df-substr 14615 df-pfx 14645 df-wlks 29400 df-trls 29493 df-eupth 29995 |
This theorem is referenced by: eucrct2eupth 30042 |
Copyright terms: Public domain | W3C validator |