| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eucrct2eupth1 | Structured version Visualization version GIF version | ||
| Description: Removing one edge (𝐼‘(𝐹‘𝑁)) from a nonempty graph 𝐺 with an Eulerian circuit 〈𝐹, 𝑃〉 results in a graph 𝑆 with an Eulerian path 〈𝐻, 𝑄〉. This is the special case of eucrct2eupth 30189 (with 𝐽 = (𝑁 − 1)) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
| Ref | Expression |
|---|---|
| eucrct2eupth1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| eucrct2eupth1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| eucrct2eupth1.d | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
| eucrct2eupth1.c | ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) |
| eucrct2eupth1.s | ⊢ (Vtx‘𝑆) = 𝑉 |
| eucrct2eupth1.g | ⊢ (𝜑 → 0 < (♯‘𝐹)) |
| eucrct2eupth1.n | ⊢ (𝜑 → 𝑁 = ((♯‘𝐹) − 1)) |
| eucrct2eupth1.e | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| eucrct2eupth1.h | ⊢ 𝐻 = (𝐹 prefix 𝑁) |
| eucrct2eupth1.q | ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
| Ref | Expression |
|---|---|
| eucrct2eupth1 | ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eucrct2eupth1.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | eucrct2eupth1.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | eucrct2eupth1.d | . 2 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
| 4 | eucrct2eupth1.n | . . 3 ⊢ (𝜑 → 𝑁 = ((♯‘𝐹) − 1)) | |
| 5 | eucrct2eupth1.g | . . . . 5 ⊢ (𝜑 → 0 < (♯‘𝐹)) | |
| 6 | eupthiswlk 30156 | . . . . . 6 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 7 | wlkcl 29561 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 8 | nn0z 12496 | . . . . . . . . 9 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ) | |
| 9 | 8 | anim1i 615 | . . . . . . . 8 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹))) |
| 10 | elnnz 12481 | . . . . . . . 8 ⊢ ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹))) | |
| 11 | 9, 10 | sylibr 234 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ) |
| 12 | 11 | ex 412 | . . . . . 6 ⊢ ((♯‘𝐹) ∈ ℕ0 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ)) |
| 13 | 3, 6, 7, 12 | 4syl 19 | . . . . 5 ⊢ (𝜑 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ)) |
| 14 | 5, 13 | mpd 15 | . . . 4 ⊢ (𝜑 → (♯‘𝐹) ∈ ℕ) |
| 15 | fzo0end 13661 | . . . 4 ⊢ ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) |
| 17 | 4, 16 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| 18 | eucrct2eupth1.e | . 2 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
| 19 | eucrct2eupth1.h | . 2 ⊢ 𝐻 = (𝐹 prefix 𝑁) | |
| 20 | eucrct2eupth1.q | . 2 ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) | |
| 21 | eucrct2eupth1.s | . 2 ⊢ (Vtx‘𝑆) = 𝑉 | |
| 22 | 1, 2, 3, 17, 18, 19, 20, 21 | eupthres 30159 | 1 ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ↾ cres 5621 “ cima 5622 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 < clt 11149 − cmin 11347 ℕcn 12128 ℕ0cn0 12384 ℤcz 12471 ...cfz 13410 ..^cfzo 13557 ♯chash 14237 prefix cpfx 14577 Vtxcvtx 28941 iEdgciedg 28942 Walkscwlks 29542 Circuitsccrcts 29729 EulerPathsceupth 30141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-substr 14548 df-pfx 14578 df-wlks 29545 df-trls 29636 df-eupth 30142 |
| This theorem is referenced by: eucrct2eupth 30189 |
| Copyright terms: Public domain | W3C validator |