MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucrct2eupth1 Structured version   Visualization version   GIF version

Theorem eucrct2eupth1 28509
Description: Removing one edge (𝐼‘(𝐹𝑁)) from a nonempty graph 𝐺 with an Eulerian circuit 𝐹, 𝑃 results in a graph 𝑆 with an Eulerian path 𝐻, 𝑄. This is the special case of eucrct2eupth 28510 (with 𝐽 = (𝑁 − 1)) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.)
Hypotheses
Ref Expression
eucrct2eupth1.v 𝑉 = (Vtx‘𝐺)
eucrct2eupth1.i 𝐼 = (iEdg‘𝐺)
eucrct2eupth1.d (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eucrct2eupth1.c (𝜑𝐹(Circuits‘𝐺)𝑃)
eucrct2eupth1.s (Vtx‘𝑆) = 𝑉
eucrct2eupth1.g (𝜑 → 0 < (♯‘𝐹))
eucrct2eupth1.n (𝜑𝑁 = ((♯‘𝐹) − 1))
eucrct2eupth1.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
eucrct2eupth1.h 𝐻 = (𝐹 prefix 𝑁)
eucrct2eupth1.q 𝑄 = (𝑃 ↾ (0...𝑁))
Assertion
Ref Expression
eucrct2eupth1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)

Proof of Theorem eucrct2eupth1
StepHypRef Expression
1 eucrct2eupth1.v . 2 𝑉 = (Vtx‘𝐺)
2 eucrct2eupth1.i . 2 𝐼 = (iEdg‘𝐺)
3 eucrct2eupth1.d . 2 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
4 eucrct2eupth1.n . . 3 (𝜑𝑁 = ((♯‘𝐹) − 1))
5 eucrct2eupth1.g . . . . 5 (𝜑 → 0 < (♯‘𝐹))
6 eupthiswlk 28477 . . . . . 6 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
7 wlkcl 27885 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
8 nn0z 12273 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
98anim1i 614 . . . . . . . . 9 (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹)))
10 elnnz 12259 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹)))
119, 10sylibr 233 . . . . . . . 8 (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ)
1211ex 412 . . . . . . 7 ((♯‘𝐹) ∈ ℕ0 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ))
137, 12syl 17 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ))
143, 6, 133syl 18 . . . . 5 (𝜑 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ))
155, 14mpd 15 . . . 4 (𝜑 → (♯‘𝐹) ∈ ℕ)
16 fzo0end 13407 . . . 4 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
1715, 16syl 17 . . 3 (𝜑 → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
184, 17eqeltrd 2839 . 2 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
19 eucrct2eupth1.e . 2 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
20 eucrct2eupth1.h . 2 𝐻 = (𝐹 prefix 𝑁)
21 eucrct2eupth1.q . 2 𝑄 = (𝑃 ↾ (0...𝑁))
22 eucrct2eupth1.s . 2 (Vtx‘𝑆) = 𝑉
231, 2, 3, 18, 19, 20, 21, 22eupthres 28480 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cres 5582  cima 5583  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   < clt 10940  cmin 11135  cn 11903  0cn0 12163  cz 12249  ...cfz 13168  ..^cfzo 13311  chash 13972   prefix cpfx 14311  Vtxcvtx 27269  iEdgciedg 27270  Walkscwlks 27866  Circuitsccrcts 28053  EulerPathsceupth 28462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-substr 14282  df-pfx 14312  df-wlks 27869  df-trls 27962  df-eupth 28463
This theorem is referenced by:  eucrct2eupth  28510
  Copyright terms: Public domain W3C validator