![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eucrct2eupth1 | Structured version Visualization version GIF version |
Description: Removing one edge (𝐼‘(𝐹‘𝑁)) from a nonempty graph 𝐺 with an Eulerian circuit 〈𝐹, 𝑃〉 results in a graph 𝑆 with an Eulerian path 〈𝐻, 𝑄〉. This is the special case of eucrct2eupth 29018 (with 𝐽 = (𝑁 − 1)) where the last segment/edge of the circuit is removed. (Contributed by AV, 11-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
Ref | Expression |
---|---|
eucrct2eupth1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
eucrct2eupth1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
eucrct2eupth1.d | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
eucrct2eupth1.c | ⊢ (𝜑 → 𝐹(Circuits‘𝐺)𝑃) |
eucrct2eupth1.s | ⊢ (Vtx‘𝑆) = 𝑉 |
eucrct2eupth1.g | ⊢ (𝜑 → 0 < (♯‘𝐹)) |
eucrct2eupth1.n | ⊢ (𝜑 → 𝑁 = ((♯‘𝐹) − 1)) |
eucrct2eupth1.e | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
eucrct2eupth1.h | ⊢ 𝐻 = (𝐹 prefix 𝑁) |
eucrct2eupth1.q | ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
Ref | Expression |
---|---|
eucrct2eupth1 | ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eucrct2eupth1.v | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eucrct2eupth1.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | eucrct2eupth1.d | . 2 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
4 | eucrct2eupth1.n | . . 3 ⊢ (𝜑 → 𝑁 = ((♯‘𝐹) − 1)) | |
5 | eucrct2eupth1.g | . . . . 5 ⊢ (𝜑 → 0 < (♯‘𝐹)) | |
6 | eupthiswlk 28985 | . . . . . 6 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
7 | wlkcl 28392 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
8 | nn0z 12483 | . . . . . . . . . 10 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ) | |
9 | 8 | anim1i 616 | . . . . . . . . 9 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹))) |
10 | elnnz 12468 | . . . . . . . . 9 ⊢ ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℤ ∧ 0 < (♯‘𝐹))) | |
11 | 9, 10 | sylibr 233 | . . . . . . . 8 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 0 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ) |
12 | 11 | ex 414 | . . . . . . 7 ⊢ ((♯‘𝐹) ∈ ℕ0 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ)) |
13 | 7, 12 | syl 17 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ)) |
14 | 3, 6, 13 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (0 < (♯‘𝐹) → (♯‘𝐹) ∈ ℕ)) |
15 | 5, 14 | mpd 15 | . . . 4 ⊢ (𝜑 → (♯‘𝐹) ∈ ℕ) |
16 | fzo0end 13619 | . . . 4 ⊢ ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) |
18 | 4, 17 | eqeltrd 2839 | . 2 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
19 | eucrct2eupth1.e | . 2 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
20 | eucrct2eupth1.h | . 2 ⊢ 𝐻 = (𝐹 prefix 𝑁) | |
21 | eucrct2eupth1.q | . 2 ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) | |
22 | eucrct2eupth1.s | . 2 ⊢ (Vtx‘𝑆) = 𝑉 | |
23 | 1, 2, 3, 18, 19, 20, 21, 22 | eupthres 28988 | 1 ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5104 ↾ cres 5634 “ cima 5635 ‘cfv 6494 (class class class)co 7352 0cc0 11010 1c1 11011 < clt 11148 − cmin 11344 ℕcn 12112 ℕ0cn0 12372 ℤcz 12458 ...cfz 13379 ..^cfzo 13522 ♯chash 14184 prefix cpfx 14516 Vtxcvtx 27776 iEdgciedg 27777 Walkscwlks 28373 Circuitsccrcts 28561 EulerPathsceupth 28970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7665 ax-cnex 11066 ax-resscn 11067 ax-1cn 11068 ax-icn 11069 ax-addcl 11070 ax-addrcl 11071 ax-mulcl 11072 ax-mulrcl 11073 ax-mulcom 11074 ax-addass 11075 ax-mulass 11076 ax-distr 11077 ax-i2m1 11078 ax-1ne0 11079 ax-1rid 11080 ax-rnegex 11081 ax-rrecex 11082 ax-cnre 11083 ax-pre-lttri 11084 ax-pre-lttrn 11085 ax-pre-ltadd 11086 ax-pre-mulgt0 11087 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ifp 1063 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-int 4907 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5530 df-eprel 5536 df-po 5544 df-so 5545 df-fr 5587 df-we 5589 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-pred 6252 df-ord 6319 df-on 6320 df-lim 6321 df-suc 6322 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-riota 7308 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7796 df-1st 7914 df-2nd 7915 df-frecs 8205 df-wrecs 8236 df-recs 8310 df-rdg 8349 df-1o 8405 df-er 8607 df-map 8726 df-pm 8727 df-en 8843 df-dom 8844 df-sdom 8845 df-fin 8846 df-card 9834 df-pnf 11150 df-mnf 11151 df-xr 11152 df-ltxr 11153 df-le 11154 df-sub 11346 df-neg 11347 df-nn 12113 df-n0 12373 df-z 12459 df-uz 12723 df-fz 13380 df-fzo 13523 df-hash 14185 df-word 14357 df-substr 14487 df-pfx 14517 df-wlks 28376 df-trls 28469 df-eupth 28971 |
This theorem is referenced by: eucrct2eupth 29018 |
Copyright terms: Public domain | W3C validator |