MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppcor Structured version   Visualization version   GIF version

Theorem fsuppcor 8869
Description: The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
fsuppcor.0 (𝜑0𝑊)
fsuppcor.z (𝜑𝑍𝐵)
fsuppcor.f (𝜑𝐹:𝐴𝐶)
fsuppcor.g (𝜑𝐺:𝐵𝐷)
fsuppcor.s (𝜑𝐶𝐵)
fsuppcor.a (𝜑𝐴𝑈)
fsuppcor.b (𝜑𝐵𝑉)
fsuppcor.n (𝜑𝐹 finSupp 𝑍)
fsuppcor.i (𝜑 → (𝐺𝑍) = 0 )
Assertion
Ref Expression
fsuppcor (𝜑 → (𝐺𝐹) finSupp 0 )

Proof of Theorem fsuppcor
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fsuppcor.g . . . 4 (𝜑𝐺:𝐵𝐷)
21ffund 6520 . . 3 (𝜑 → Fun 𝐺)
3 fsuppcor.f . . . 4 (𝜑𝐹:𝐴𝐶)
43ffund 6520 . . 3 (𝜑 → Fun 𝐹)
5 funco 6397 . . 3 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺𝐹))
62, 4, 5syl2anc 586 . 2 (𝜑 → Fun (𝐺𝐹))
7 fsuppcor.n . . . 4 (𝜑𝐹 finSupp 𝑍)
87fsuppimpd 8842 . . 3 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
9 fsuppcor.s . . . . . 6 (𝜑𝐶𝐵)
101, 9fssresd 6547 . . . . 5 (𝜑 → (𝐺𝐶):𝐶𝐷)
11 fco2 6535 . . . . 5 (((𝐺𝐶):𝐶𝐷𝐹:𝐴𝐶) → (𝐺𝐹):𝐴𝐷)
1210, 3, 11syl2anc 586 . . . 4 (𝜑 → (𝐺𝐹):𝐴𝐷)
13 eldifi 4105 . . . . . 6 (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥𝐴)
14 fvco3 6762 . . . . . 6 ((𝐹:𝐴𝐶𝑥𝐴) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
153, 13, 14syl2an 597 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
16 ssidd 3992 . . . . . . 7 (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍))
17 fsuppcor.a . . . . . . 7 (𝜑𝐴𝑈)
18 fsuppcor.z . . . . . . 7 (𝜑𝑍𝐵)
193, 16, 17, 18suppssr 7863 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹𝑥) = 𝑍)
2019fveq2d 6676 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘(𝐹𝑥)) = (𝐺𝑍))
21 fsuppcor.i . . . . . 6 (𝜑 → (𝐺𝑍) = 0 )
2221adantr 483 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺𝑍) = 0 )
2315, 20, 223eqtrd 2862 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺𝐹)‘𝑥) = 0 )
2412, 23suppss 7862 . . 3 (𝜑 → ((𝐺𝐹) supp 0 ) ⊆ (𝐹 supp 𝑍))
258, 24ssfid 8743 . 2 (𝜑 → ((𝐺𝐹) supp 0 ) ∈ Fin)
26 fsuppcor.b . . . . 5 (𝜑𝐵𝑉)
27 fex 6991 . . . . 5 ((𝐺:𝐵𝐷𝐵𝑉) → 𝐺 ∈ V)
281, 26, 27syl2anc 586 . . . 4 (𝜑𝐺 ∈ V)
29 fex 6991 . . . . 5 ((𝐹:𝐴𝐶𝐴𝑈) → 𝐹 ∈ V)
303, 17, 29syl2anc 586 . . . 4 (𝜑𝐹 ∈ V)
31 coexg 7636 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V) → (𝐺𝐹) ∈ V)
3228, 30, 31syl2anc 586 . . 3 (𝜑 → (𝐺𝐹) ∈ V)
33 fsuppcor.0 . . 3 (𝜑0𝑊)
34 isfsupp 8839 . . 3 (((𝐺𝐹) ∈ V ∧ 0𝑊) → ((𝐺𝐹) finSupp 0 ↔ (Fun (𝐺𝐹) ∧ ((𝐺𝐹) supp 0 ) ∈ Fin)))
3532, 33, 34syl2anc 586 . 2 (𝜑 → ((𝐺𝐹) finSupp 0 ↔ (Fun (𝐺𝐹) ∧ ((𝐺𝐹) supp 0 ) ∈ Fin)))
366, 25, 35mpbir2and 711 1 (𝜑 → (𝐺𝐹) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  cdif 3935  wss 3938   class class class wbr 5068  cres 5559  ccom 5561  Fun wfun 6351  wf 6353  cfv 6357  (class class class)co 7158   supp csupp 7832  Fincfn 8511   finSupp cfsupp 8835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-supp 7833  df-er 8291  df-en 8512  df-fin 8515  df-fsupp 8836
This theorem is referenced by:  mapfienlem1  8870  mapfienlem2  8871  cpmadumatpolylem2  21492  selvval2lem4  39143
  Copyright terms: Public domain W3C validator