MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppcor Structured version   Visualization version   GIF version

Theorem fsuppcor 9437
Description: The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
fsuppcor.0 (𝜑0𝑊)
fsuppcor.z (𝜑𝑍𝐵)
fsuppcor.f (𝜑𝐹:𝐴𝐶)
fsuppcor.g (𝜑𝐺:𝐵𝐷)
fsuppcor.s (𝜑𝐶𝐵)
fsuppcor.a (𝜑𝐴𝑈)
fsuppcor.b (𝜑𝐵𝑉)
fsuppcor.n (𝜑𝐹 finSupp 𝑍)
fsuppcor.i (𝜑 → (𝐺𝑍) = 0 )
Assertion
Ref Expression
fsuppcor (𝜑 → (𝐺𝐹) finSupp 0 )

Proof of Theorem fsuppcor
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fsuppcor.g . . . 4 (𝜑𝐺:𝐵𝐷)
21ffund 6731 . . 3 (𝜑 → Fun 𝐺)
3 fsuppcor.f . . . 4 (𝜑𝐹:𝐴𝐶)
43ffund 6731 . . 3 (𝜑 → Fun 𝐹)
5 funco 6598 . . 3 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺𝐹))
62, 4, 5syl2anc 582 . 2 (𝜑 → Fun (𝐺𝐹))
7 fsuppcor.n . . . 4 (𝜑𝐹 finSupp 𝑍)
87fsuppimpd 9403 . . 3 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
9 fsuppcor.s . . . . . 6 (𝜑𝐶𝐵)
101, 9fssresd 6769 . . . . 5 (𝜑 → (𝐺𝐶):𝐶𝐷)
11 fco2 6755 . . . . 5 (((𝐺𝐶):𝐶𝐷𝐹:𝐴𝐶) → (𝐺𝐹):𝐴𝐷)
1210, 3, 11syl2anc 582 . . . 4 (𝜑 → (𝐺𝐹):𝐴𝐷)
13 eldifi 4127 . . . . . 6 (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥𝐴)
14 fvco3 7002 . . . . . 6 ((𝐹:𝐴𝐶𝑥𝐴) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
153, 13, 14syl2an 594 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
16 ssidd 4005 . . . . . . 7 (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍))
17 fsuppcor.a . . . . . . 7 (𝜑𝐴𝑈)
18 fsuppcor.z . . . . . . 7 (𝜑𝑍𝐵)
193, 16, 17, 18suppssr 8209 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹𝑥) = 𝑍)
2019fveq2d 6906 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘(𝐹𝑥)) = (𝐺𝑍))
21 fsuppcor.i . . . . . 6 (𝜑 → (𝐺𝑍) = 0 )
2221adantr 479 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺𝑍) = 0 )
2315, 20, 223eqtrd 2772 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺𝐹)‘𝑥) = 0 )
2412, 23suppss 8207 . . 3 (𝜑 → ((𝐺𝐹) supp 0 ) ⊆ (𝐹 supp 𝑍))
258, 24ssfid 9300 . 2 (𝜑 → ((𝐺𝐹) supp 0 ) ∈ Fin)
26 fsuppcor.b . . . . 5 (𝜑𝐵𝑉)
271, 26fexd 7245 . . . 4 (𝜑𝐺 ∈ V)
283, 17fexd 7245 . . . 4 (𝜑𝐹 ∈ V)
29 coexg 7945 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V) → (𝐺𝐹) ∈ V)
3027, 28, 29syl2anc 582 . . 3 (𝜑 → (𝐺𝐹) ∈ V)
31 fsuppcor.0 . . 3 (𝜑0𝑊)
32 isfsupp 9399 . . 3 (((𝐺𝐹) ∈ V ∧ 0𝑊) → ((𝐺𝐹) finSupp 0 ↔ (Fun (𝐺𝐹) ∧ ((𝐺𝐹) supp 0 ) ∈ Fin)))
3330, 31, 32syl2anc 582 . 2 (𝜑 → ((𝐺𝐹) finSupp 0 ↔ (Fun (𝐺𝐹) ∧ ((𝐺𝐹) supp 0 ) ∈ Fin)))
346, 25, 33mpbir2and 711 1 (𝜑 → (𝐺𝐹) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3473  cdif 3946  wss 3949   class class class wbr 5152  cres 5684  ccom 5686  Fun wfun 6547  wf 6549  cfv 6553  (class class class)co 7426   supp csupp 8173  Fincfn 8972   finSupp cfsupp 9395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-supp 8174  df-1o 8495  df-en 8973  df-fin 8976  df-fsupp 9396
This theorem is referenced by:  mapfienlem1  9438  mapfienlem2  9439  cpmadumatpolylem2  22812  mhmcompl  41825  selvvvval  41867
  Copyright terms: Public domain W3C validator