MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppcor Structured version   Visualization version   GIF version

Theorem fsuppcor 9442
Description: The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
fsuppcor.0 (𝜑0𝑊)
fsuppcor.z (𝜑𝑍𝐵)
fsuppcor.f (𝜑𝐹:𝐴𝐶)
fsuppcor.g (𝜑𝐺:𝐵𝐷)
fsuppcor.s (𝜑𝐶𝐵)
fsuppcor.a (𝜑𝐴𝑈)
fsuppcor.b (𝜑𝐵𝑉)
fsuppcor.n (𝜑𝐹 finSupp 𝑍)
fsuppcor.i (𝜑 → (𝐺𝑍) = 0 )
Assertion
Ref Expression
fsuppcor (𝜑 → (𝐺𝐹) finSupp 0 )

Proof of Theorem fsuppcor
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fsuppcor.g . . . 4 (𝜑𝐺:𝐵𝐷)
21ffund 6741 . . 3 (𝜑 → Fun 𝐺)
3 fsuppcor.f . . . 4 (𝜑𝐹:𝐴𝐶)
43ffund 6741 . . 3 (𝜑 → Fun 𝐹)
5 funco 6608 . . 3 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺𝐹))
62, 4, 5syl2anc 584 . 2 (𝜑 → Fun (𝐺𝐹))
7 fsuppcor.n . . . 4 (𝜑𝐹 finSupp 𝑍)
87fsuppimpd 9407 . . 3 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
9 fsuppcor.s . . . . . 6 (𝜑𝐶𝐵)
101, 9fssresd 6776 . . . . 5 (𝜑 → (𝐺𝐶):𝐶𝐷)
11 fco2 6763 . . . . 5 (((𝐺𝐶):𝐶𝐷𝐹:𝐴𝐶) → (𝐺𝐹):𝐴𝐷)
1210, 3, 11syl2anc 584 . . . 4 (𝜑 → (𝐺𝐹):𝐴𝐷)
13 eldifi 4141 . . . . . 6 (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥𝐴)
14 fvco3 7008 . . . . . 6 ((𝐹:𝐴𝐶𝑥𝐴) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
153, 13, 14syl2an 596 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
16 ssidd 4019 . . . . . . 7 (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍))
17 fsuppcor.a . . . . . . 7 (𝜑𝐴𝑈)
18 fsuppcor.z . . . . . . 7 (𝜑𝑍𝐵)
193, 16, 17, 18suppssr 8219 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹𝑥) = 𝑍)
2019fveq2d 6911 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘(𝐹𝑥)) = (𝐺𝑍))
21 fsuppcor.i . . . . . 6 (𝜑 → (𝐺𝑍) = 0 )
2221adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺𝑍) = 0 )
2315, 20, 223eqtrd 2779 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺𝐹)‘𝑥) = 0 )
2412, 23suppss 8218 . . 3 (𝜑 → ((𝐺𝐹) supp 0 ) ⊆ (𝐹 supp 𝑍))
258, 24ssfid 9299 . 2 (𝜑 → ((𝐺𝐹) supp 0 ) ∈ Fin)
26 fsuppcor.b . . . . 5 (𝜑𝐵𝑉)
271, 26fexd 7247 . . . 4 (𝜑𝐺 ∈ V)
283, 17fexd 7247 . . . 4 (𝜑𝐹 ∈ V)
29 coexg 7952 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V) → (𝐺𝐹) ∈ V)
3027, 28, 29syl2anc 584 . . 3 (𝜑 → (𝐺𝐹) ∈ V)
31 fsuppcor.0 . . 3 (𝜑0𝑊)
32 isfsupp 9403 . . 3 (((𝐺𝐹) ∈ V ∧ 0𝑊) → ((𝐺𝐹) finSupp 0 ↔ (Fun (𝐺𝐹) ∧ ((𝐺𝐹) supp 0 ) ∈ Fin)))
3330, 31, 32syl2anc 584 . 2 (𝜑 → ((𝐺𝐹) finSupp 0 ↔ (Fun (𝐺𝐹) ∧ ((𝐺𝐹) supp 0 ) ∈ Fin)))
346, 25, 33mpbir2and 713 1 (𝜑 → (𝐺𝐹) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cdif 3960  wss 3963   class class class wbr 5148  cres 5691  ccom 5693  Fun wfun 6557  wf 6559  cfv 6563  (class class class)co 7431   supp csupp 8184  Fincfn 8984   finSupp cfsupp 9399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-supp 8185  df-1o 8505  df-en 8985  df-fin 8988  df-fsupp 9400
This theorem is referenced by:  mapfienlem1  9443  mapfienlem2  9444  mhmcompl  22400  cpmadumatpolylem2  22904  selvvvval  42572
  Copyright terms: Public domain W3C validator