![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppcor | Structured version Visualization version GIF version |
Description: The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
fsuppcor.0 | ⊢ (𝜑 → 0 ∈ 𝑊) |
fsuppcor.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
fsuppcor.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
fsuppcor.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) |
fsuppcor.s | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
fsuppcor.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
fsuppcor.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fsuppcor.n | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
fsuppcor.i | ⊢ (𝜑 → (𝐺‘𝑍) = 0 ) |
Ref | Expression |
---|---|
fsuppcor | ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppcor.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) | |
2 | 1 | ffund 6677 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
3 | fsuppcor.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | |
4 | 3 | ffund 6677 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
5 | funco 6546 | . . 3 ⊢ ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺 ∘ 𝐹)) | |
6 | 2, 4, 5 | syl2anc 585 | . 2 ⊢ (𝜑 → Fun (𝐺 ∘ 𝐹)) |
7 | fsuppcor.n | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
8 | 7 | fsuppimpd 9319 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
9 | fsuppcor.s | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
10 | 1, 9 | fssresd 6714 | . . . . 5 ⊢ (𝜑 → (𝐺 ↾ 𝐶):𝐶⟶𝐷) |
11 | fco2 6700 | . . . . 5 ⊢ (((𝐺 ↾ 𝐶):𝐶⟶𝐷 ∧ 𝐹:𝐴⟶𝐶) → (𝐺 ∘ 𝐹):𝐴⟶𝐷) | |
12 | 10, 3, 11 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝐴⟶𝐷) |
13 | eldifi 4091 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐴) | |
14 | fvco3 6945 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) | |
15 | 3, 13, 14 | syl2an 597 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
16 | ssidd 3972 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
17 | fsuppcor.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
18 | fsuppcor.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
19 | 3, 16, 17, 18 | suppssr 8132 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹‘𝑥) = 𝑍) |
20 | 19 | fveq2d 6851 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘(𝐹‘𝑥)) = (𝐺‘𝑍)) |
21 | fsuppcor.i | . . . . . 6 ⊢ (𝜑 → (𝐺‘𝑍) = 0 ) | |
22 | 21 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘𝑍) = 0 ) |
23 | 15, 20, 22 | 3eqtrd 2781 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = 0 ) |
24 | 12, 23 | suppss 8130 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 0 ) ⊆ (𝐹 supp 𝑍)) |
25 | 8, 24 | ssfid 9218 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin) |
26 | fsuppcor.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
27 | 1, 26 | fexd 7182 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
28 | 3, 17 | fexd 7182 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
29 | coexg 7871 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V) → (𝐺 ∘ 𝐹) ∈ V) | |
30 | 27, 28, 29 | syl2anc 585 | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
31 | fsuppcor.0 | . . 3 ⊢ (𝜑 → 0 ∈ 𝑊) | |
32 | isfsupp 9316 | . . 3 ⊢ (((𝐺 ∘ 𝐹) ∈ V ∧ 0 ∈ 𝑊) → ((𝐺 ∘ 𝐹) finSupp 0 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin))) | |
33 | 30, 31, 32 | syl2anc 585 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) finSupp 0 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin))) |
34 | 6, 25, 33 | mpbir2and 712 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3448 ∖ cdif 3912 ⊆ wss 3915 class class class wbr 5110 ↾ cres 5640 ∘ ccom 5642 Fun wfun 6495 ⟶wf 6497 ‘cfv 6501 (class class class)co 7362 supp csupp 8097 Fincfn 8890 finSupp cfsupp 9312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-supp 8098 df-1o 8417 df-en 8891 df-fin 8894 df-fsupp 9313 |
This theorem is referenced by: mapfienlem1 9348 mapfienlem2 9349 cpmadumatpolylem2 22247 mhmcompl 40765 |
Copyright terms: Public domain | W3C validator |