Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsuppcor | Structured version Visualization version GIF version |
Description: The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
fsuppcor.0 | ⊢ (𝜑 → 0 ∈ 𝑊) |
fsuppcor.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
fsuppcor.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
fsuppcor.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) |
fsuppcor.s | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
fsuppcor.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
fsuppcor.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fsuppcor.n | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
fsuppcor.i | ⊢ (𝜑 → (𝐺‘𝑍) = 0 ) |
Ref | Expression |
---|---|
fsuppcor | ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppcor.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) | |
2 | 1 | ffund 6659 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
3 | fsuppcor.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | |
4 | 3 | ffund 6659 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
5 | funco 6528 | . . 3 ⊢ ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺 ∘ 𝐹)) | |
6 | 2, 4, 5 | syl2anc 585 | . 2 ⊢ (𝜑 → Fun (𝐺 ∘ 𝐹)) |
7 | fsuppcor.n | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
8 | 7 | fsuppimpd 9237 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
9 | fsuppcor.s | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
10 | 1, 9 | fssresd 6696 | . . . . 5 ⊢ (𝜑 → (𝐺 ↾ 𝐶):𝐶⟶𝐷) |
11 | fco2 6682 | . . . . 5 ⊢ (((𝐺 ↾ 𝐶):𝐶⟶𝐷 ∧ 𝐹:𝐴⟶𝐶) → (𝐺 ∘ 𝐹):𝐴⟶𝐷) | |
12 | 10, 3, 11 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝐴⟶𝐷) |
13 | eldifi 4077 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐴) | |
14 | fvco3 6927 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) | |
15 | 3, 13, 14 | syl2an 597 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
16 | ssidd 3958 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
17 | fsuppcor.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
18 | fsuppcor.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
19 | 3, 16, 17, 18 | suppssr 8086 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹‘𝑥) = 𝑍) |
20 | 19 | fveq2d 6833 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘(𝐹‘𝑥)) = (𝐺‘𝑍)) |
21 | fsuppcor.i | . . . . . 6 ⊢ (𝜑 → (𝐺‘𝑍) = 0 ) | |
22 | 21 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘𝑍) = 0 ) |
23 | 15, 20, 22 | 3eqtrd 2781 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = 0 ) |
24 | 12, 23 | suppss 8084 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 0 ) ⊆ (𝐹 supp 𝑍)) |
25 | 8, 24 | ssfid 9136 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin) |
26 | fsuppcor.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
27 | 1, 26 | fexd 7163 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
28 | 3, 17 | fexd 7163 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
29 | coexg 7848 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V) → (𝐺 ∘ 𝐹) ∈ V) | |
30 | 27, 28, 29 | syl2anc 585 | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
31 | fsuppcor.0 | . . 3 ⊢ (𝜑 → 0 ∈ 𝑊) | |
32 | isfsupp 9234 | . . 3 ⊢ (((𝐺 ∘ 𝐹) ∈ V ∧ 0 ∈ 𝑊) → ((𝐺 ∘ 𝐹) finSupp 0 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin))) | |
33 | 30, 31, 32 | syl2anc 585 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) finSupp 0 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin))) |
34 | 6, 25, 33 | mpbir2and 711 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ∖ cdif 3898 ⊆ wss 3901 class class class wbr 5096 ↾ cres 5626 ∘ ccom 5628 Fun wfun 6477 ⟶wf 6479 ‘cfv 6483 (class class class)co 7341 supp csupp 8051 Fincfn 8808 finSupp cfsupp 9230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-supp 8052 df-1o 8371 df-en 8809 df-fin 8812 df-fsupp 9231 |
This theorem is referenced by: mapfienlem1 9266 mapfienlem2 9267 cpmadumatpolylem2 22136 selvval2lem4 40533 |
Copyright terms: Public domain | W3C validator |