| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppcor | Structured version Visualization version GIF version | ||
| Description: The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppcor.0 | ⊢ (𝜑 → 0 ∈ 𝑊) |
| fsuppcor.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| fsuppcor.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| fsuppcor.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) |
| fsuppcor.s | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| fsuppcor.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| fsuppcor.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fsuppcor.n | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| fsuppcor.i | ⊢ (𝜑 → (𝐺‘𝑍) = 0 ) |
| Ref | Expression |
|---|---|
| fsuppcor | ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppcor.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) | |
| 2 | 1 | ffund 6660 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
| 3 | fsuppcor.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | |
| 4 | 3 | ffund 6660 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 5 | funco 6526 | . . 3 ⊢ ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺 ∘ 𝐹)) | |
| 6 | 2, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → Fun (𝐺 ∘ 𝐹)) |
| 7 | fsuppcor.n | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 8 | 7 | fsuppimpd 9278 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 9 | fsuppcor.s | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
| 10 | 1, 9 | fssresd 6695 | . . . . 5 ⊢ (𝜑 → (𝐺 ↾ 𝐶):𝐶⟶𝐷) |
| 11 | fco2 6682 | . . . . 5 ⊢ (((𝐺 ↾ 𝐶):𝐶⟶𝐷 ∧ 𝐹:𝐴⟶𝐶) → (𝐺 ∘ 𝐹):𝐴⟶𝐷) | |
| 12 | 10, 3, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝐴⟶𝐷) |
| 13 | eldifi 4084 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐴) | |
| 14 | fvco3 6926 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) | |
| 15 | 3, 13, 14 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 16 | ssidd 3961 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
| 17 | fsuppcor.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 18 | fsuppcor.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 19 | 3, 16, 17, 18 | suppssr 8135 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹‘𝑥) = 𝑍) |
| 20 | 19 | fveq2d 6830 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘(𝐹‘𝑥)) = (𝐺‘𝑍)) |
| 21 | fsuppcor.i | . . . . . 6 ⊢ (𝜑 → (𝐺‘𝑍) = 0 ) | |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘𝑍) = 0 ) |
| 23 | 15, 20, 22 | 3eqtrd 2768 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = 0 ) |
| 24 | 12, 23 | suppss 8134 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 0 ) ⊆ (𝐹 supp 𝑍)) |
| 25 | 8, 24 | ssfid 9170 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin) |
| 26 | fsuppcor.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 27 | 1, 26 | fexd 7167 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
| 28 | 3, 17 | fexd 7167 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
| 29 | coexg 7869 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V) → (𝐺 ∘ 𝐹) ∈ V) | |
| 30 | 27, 28, 29 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
| 31 | fsuppcor.0 | . . 3 ⊢ (𝜑 → 0 ∈ 𝑊) | |
| 32 | isfsupp 9274 | . . 3 ⊢ (((𝐺 ∘ 𝐹) ∈ V ∧ 0 ∈ 𝑊) → ((𝐺 ∘ 𝐹) finSupp 0 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin))) | |
| 33 | 30, 31, 32 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) finSupp 0 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin))) |
| 34 | 6, 25, 33 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∖ cdif 3902 ⊆ wss 3905 class class class wbr 5095 ↾ cres 5625 ∘ ccom 5627 Fun wfun 6480 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 supp csupp 8100 Fincfn 8879 finSupp cfsupp 9270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-supp 8101 df-1o 8395 df-en 8880 df-fin 8883 df-fsupp 9271 |
| This theorem is referenced by: mapfienlem1 9314 mapfienlem2 9315 mhmcompl 22283 cpmadumatpolylem2 22785 selvvvval 42558 |
| Copyright terms: Public domain | W3C validator |