| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppcor | Structured version Visualization version GIF version | ||
| Description: The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppcor.0 | ⊢ (𝜑 → 0 ∈ 𝑊) |
| fsuppcor.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| fsuppcor.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| fsuppcor.g | ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) |
| fsuppcor.s | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| fsuppcor.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| fsuppcor.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fsuppcor.n | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| fsuppcor.i | ⊢ (𝜑 → (𝐺‘𝑍) = 0 ) |
| Ref | Expression |
|---|---|
| fsuppcor | ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppcor.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) | |
| 2 | 1 | ffund 6651 | . . 3 ⊢ (𝜑 → Fun 𝐺) |
| 3 | fsuppcor.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | |
| 4 | 3 | ffund 6651 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 5 | funco 6517 | . . 3 ⊢ ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺 ∘ 𝐹)) | |
| 6 | 2, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → Fun (𝐺 ∘ 𝐹)) |
| 7 | fsuppcor.n | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑍) | |
| 8 | 7 | fsuppimpd 9248 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 9 | fsuppcor.s | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
| 10 | 1, 9 | fssresd 6686 | . . . . 5 ⊢ (𝜑 → (𝐺 ↾ 𝐶):𝐶⟶𝐷) |
| 11 | fco2 6673 | . . . . 5 ⊢ (((𝐺 ↾ 𝐶):𝐶⟶𝐷 ∧ 𝐹:𝐴⟶𝐶) → (𝐺 ∘ 𝐹):𝐴⟶𝐷) | |
| 12 | 10, 3, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺 ∘ 𝐹):𝐴⟶𝐷) |
| 13 | eldifi 4079 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥 ∈ 𝐴) | |
| 14 | fvco3 6916 | . . . . . 6 ⊢ ((𝐹:𝐴⟶𝐶 ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) | |
| 15 | 3, 13, 14 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 16 | ssidd 3956 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)) | |
| 17 | fsuppcor.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 18 | fsuppcor.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 19 | 3, 16, 17, 18 | suppssr 8120 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹‘𝑥) = 𝑍) |
| 20 | 19 | fveq2d 6821 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘(𝐹‘𝑥)) = (𝐺‘𝑍)) |
| 21 | fsuppcor.i | . . . . . 6 ⊢ (𝜑 → (𝐺‘𝑍) = 0 ) | |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘𝑍) = 0 ) |
| 23 | 15, 20, 22 | 3eqtrd 2769 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺 ∘ 𝐹)‘𝑥) = 0 ) |
| 24 | 12, 23 | suppss 8119 | . . 3 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 0 ) ⊆ (𝐹 supp 𝑍)) |
| 25 | 8, 24 | ssfid 9148 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin) |
| 26 | fsuppcor.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 27 | 1, 26 | fexd 7156 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ V) |
| 28 | 3, 17 | fexd 7156 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
| 29 | coexg 7854 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐹 ∈ V) → (𝐺 ∘ 𝐹) ∈ V) | |
| 30 | 27, 28, 29 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
| 31 | fsuppcor.0 | . . 3 ⊢ (𝜑 → 0 ∈ 𝑊) | |
| 32 | isfsupp 9244 | . . 3 ⊢ (((𝐺 ∘ 𝐹) ∈ V ∧ 0 ∈ 𝑊) → ((𝐺 ∘ 𝐹) finSupp 0 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin))) | |
| 33 | 30, 31, 32 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐺 ∘ 𝐹) finSupp 0 ↔ (Fun (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹) supp 0 ) ∈ Fin))) |
| 34 | 6, 25, 33 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹) finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∖ cdif 3897 ⊆ wss 3900 class class class wbr 5089 ↾ cres 5616 ∘ ccom 5618 Fun wfun 6471 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 supp csupp 8085 Fincfn 8864 finSupp cfsupp 9240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-supp 8086 df-1o 8380 df-en 8865 df-fin 8868 df-fsupp 9241 |
| This theorem is referenced by: mapfienlem1 9284 mapfienlem2 9285 mhmcompl 22288 cpmadumatpolylem2 22790 esplympl 33578 selvvvval 42597 |
| Copyright terms: Public domain | W3C validator |