Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fcofo | Structured version Visualization version GIF version |
Description: An application is surjective if a section exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 17-Nov-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
fcofo | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴–onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴⟶𝐵) | |
2 | ffvelrn 6941 | . . . . 5 ⊢ ((𝑆:𝐵⟶𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑆‘𝑦) ∈ 𝐴) | |
3 | 2 | 3ad2antl2 1184 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) ∧ 𝑦 ∈ 𝐵) → (𝑆‘𝑦) ∈ 𝐴) |
4 | simpl3 1191 | . . . . . 6 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) ∧ 𝑦 ∈ 𝐵) → (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) | |
5 | 4 | fveq1d 6758 | . . . . 5 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) ∧ 𝑦 ∈ 𝐵) → ((𝐹 ∘ 𝑆)‘𝑦) = (( I ↾ 𝐵)‘𝑦)) |
6 | fvco3 6849 | . . . . . 6 ⊢ ((𝑆:𝐵⟶𝐴 ∧ 𝑦 ∈ 𝐵) → ((𝐹 ∘ 𝑆)‘𝑦) = (𝐹‘(𝑆‘𝑦))) | |
7 | 6 | 3ad2antl2 1184 | . . . . 5 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) ∧ 𝑦 ∈ 𝐵) → ((𝐹 ∘ 𝑆)‘𝑦) = (𝐹‘(𝑆‘𝑦))) |
8 | fvresi 7027 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦) | |
9 | 8 | adantl 481 | . . . . 5 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) ∧ 𝑦 ∈ 𝐵) → (( I ↾ 𝐵)‘𝑦) = 𝑦) |
10 | 5, 7, 9 | 3eqtr3rd 2787 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) ∧ 𝑦 ∈ 𝐵) → 𝑦 = (𝐹‘(𝑆‘𝑦))) |
11 | fveq2 6756 | . . . . 5 ⊢ (𝑥 = (𝑆‘𝑦) → (𝐹‘𝑥) = (𝐹‘(𝑆‘𝑦))) | |
12 | 11 | rspceeqv 3567 | . . . 4 ⊢ (((𝑆‘𝑦) ∈ 𝐴 ∧ 𝑦 = (𝐹‘(𝑆‘𝑦))) → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
13 | 3, 10, 12 | syl2anc 583 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
14 | 13 | ralrimiva 3107 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
15 | dffo3 6960 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) | |
16 | 1, 14, 15 | sylanbrc 582 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴–onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 I cid 5479 ↾ cres 5582 ∘ ccom 5584 ⟶wf 6414 –onto→wfo 6416 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 |
This theorem is referenced by: fcof1od 7146 smndex2dnrinv 18469 |
Copyright terms: Public domain | W3C validator |