MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcofo Structured version   Visualization version   GIF version

Theorem fcofo 7156
Description: An application is surjective if a section exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 17-Nov-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcofo ((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)

Proof of Theorem fcofo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . 2 ((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴𝐵)
2 ffvelrn 6956 . . . . 5 ((𝑆:𝐵𝐴𝑦𝐵) → (𝑆𝑦) ∈ 𝐴)
323ad2antl2 1185 . . . 4 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → (𝑆𝑦) ∈ 𝐴)
4 simpl3 1192 . . . . . 6 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → (𝐹𝑆) = ( I ↾ 𝐵))
54fveq1d 6773 . . . . 5 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → ((𝐹𝑆)‘𝑦) = (( I ↾ 𝐵)‘𝑦))
6 fvco3 6864 . . . . . 6 ((𝑆:𝐵𝐴𝑦𝐵) → ((𝐹𝑆)‘𝑦) = (𝐹‘(𝑆𝑦)))
763ad2antl2 1185 . . . . 5 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → ((𝐹𝑆)‘𝑦) = (𝐹‘(𝑆𝑦)))
8 fvresi 7042 . . . . . 6 (𝑦𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦)
98adantl 482 . . . . 5 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → (( I ↾ 𝐵)‘𝑦) = 𝑦)
105, 7, 93eqtr3rd 2789 . . . 4 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → 𝑦 = (𝐹‘(𝑆𝑦)))
11 fveq2 6771 . . . . 5 (𝑥 = (𝑆𝑦) → (𝐹𝑥) = (𝐹‘(𝑆𝑦)))
1211rspceeqv 3576 . . . 4 (((𝑆𝑦) ∈ 𝐴𝑦 = (𝐹‘(𝑆𝑦))) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
133, 10, 12syl2anc 584 . . 3 (((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑦 = (𝐹𝑥))
1413ralrimiva 3110 . 2 ((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) → ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥))
15 dffo3 6975 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
161, 14, 15sylanbrc 583 1 ((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wral 3066  wrex 3067   I cid 5489  cres 5592  ccom 5594  wf 6428  ontowfo 6430  cfv 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fo 6438  df-fv 6440
This theorem is referenced by:  fcof1od  7162  smndex2dnrinv  18552
  Copyright terms: Public domain W3C validator