| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcofo | Structured version Visualization version GIF version | ||
| Description: An application is surjective if a section exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 17-Nov-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| fcofo | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴–onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴⟶𝐵) | |
| 2 | ffvelcdm 7076 | . . . . 5 ⊢ ((𝑆:𝐵⟶𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑆‘𝑦) ∈ 𝐴) | |
| 3 | 2 | 3ad2antl2 1187 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) ∧ 𝑦 ∈ 𝐵) → (𝑆‘𝑦) ∈ 𝐴) |
| 4 | simpl3 1194 | . . . . . 6 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) ∧ 𝑦 ∈ 𝐵) → (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) | |
| 5 | 4 | fveq1d 6883 | . . . . 5 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) ∧ 𝑦 ∈ 𝐵) → ((𝐹 ∘ 𝑆)‘𝑦) = (( I ↾ 𝐵)‘𝑦)) |
| 6 | fvco3 6983 | . . . . . 6 ⊢ ((𝑆:𝐵⟶𝐴 ∧ 𝑦 ∈ 𝐵) → ((𝐹 ∘ 𝑆)‘𝑦) = (𝐹‘(𝑆‘𝑦))) | |
| 7 | 6 | 3ad2antl2 1187 | . . . . 5 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) ∧ 𝑦 ∈ 𝐵) → ((𝐹 ∘ 𝑆)‘𝑦) = (𝐹‘(𝑆‘𝑦))) |
| 8 | fvresi 7170 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦) | |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) ∧ 𝑦 ∈ 𝐵) → (( I ↾ 𝐵)‘𝑦) = 𝑦) |
| 10 | 5, 7, 9 | 3eqtr3rd 2780 | . . . 4 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) ∧ 𝑦 ∈ 𝐵) → 𝑦 = (𝐹‘(𝑆‘𝑦))) |
| 11 | fveq2 6881 | . . . . 5 ⊢ (𝑥 = (𝑆‘𝑦) → (𝐹‘𝑥) = (𝐹‘(𝑆‘𝑦))) | |
| 12 | 11 | rspceeqv 3629 | . . . 4 ⊢ (((𝑆‘𝑦) ∈ 𝐴 ∧ 𝑦 = (𝐹‘(𝑆‘𝑦))) → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
| 13 | 3, 10, 12 | syl2anc 584 | . . 3 ⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
| 14 | 13 | ralrimiva 3133 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
| 15 | dffo3 7097 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) | |
| 16 | 1, 14, 15 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑆:𝐵⟶𝐴 ∧ (𝐹 ∘ 𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴–onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 I cid 5552 ↾ cres 5661 ∘ ccom 5663 ⟶wf 6532 –onto→wfo 6534 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 |
| This theorem is referenced by: fcof1od 7292 smndex2dnrinv 18898 |
| Copyright terms: Public domain | W3C validator |