| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrff1o | Structured version Visualization version GIF version | ||
| Description: A transposition function is a permutation. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| pmtrrn.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| pmtrrn.r | ⊢ 𝑅 = ran 𝑇 |
| Ref | Expression |
|---|---|
| pmtrff1o | ⊢ (𝐹 ∈ 𝑅 → 𝐹:𝐷–1-1-onto→𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | . . . . . 6 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 2 | pmtrrn.r | . . . . . 6 ⊢ 𝑅 = ran 𝑇 | |
| 3 | eqid 2730 | . . . . . 6 ⊢ dom (𝐹 ∖ I ) = dom (𝐹 ∖ I ) | |
| 4 | 1, 2, 3 | pmtrfrn 19395 | . . . . 5 ⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I )))) |
| 5 | 4 | simpld 494 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o)) |
| 6 | 1 | pmtrf 19392 | . . . 4 ⊢ ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )):𝐷⟶𝐷) |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (𝑇‘dom (𝐹 ∖ I )):𝐷⟶𝐷) |
| 8 | 4 | simprd 495 | . . . 4 ⊢ (𝐹 ∈ 𝑅 → 𝐹 = (𝑇‘dom (𝐹 ∖ I ))) |
| 9 | 8 | feq1d 6673 | . . 3 ⊢ (𝐹 ∈ 𝑅 → (𝐹:𝐷⟶𝐷 ↔ (𝑇‘dom (𝐹 ∖ I )):𝐷⟶𝐷)) |
| 10 | 7, 9 | mpbird 257 | . 2 ⊢ (𝐹 ∈ 𝑅 → 𝐹:𝐷⟶𝐷) |
| 11 | 1, 2 | pmtrfinv 19398 | . 2 ⊢ (𝐹 ∈ 𝑅 → (𝐹 ∘ 𝐹) = ( I ↾ 𝐷)) |
| 12 | 10, 10, 11, 11 | fcof1od 7272 | 1 ⊢ (𝐹 ∈ 𝑅 → 𝐹:𝐷–1-1-onto→𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 class class class wbr 5110 I cid 5535 dom cdm 5641 ran crn 5642 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 2oc2o 8431 ≈ cen 8918 pmTrspcpmtr 19378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pmtr 19379 |
| This theorem is referenced by: pmtrfb 19402 pmtrfconj 19403 symgtrf 19406 psgnunilem1 19430 pmtrcnel 33053 pmtrcnel2 33054 fzo0pmtrlast 33056 pmtridf1o 33058 psgnfzto1stlem 33064 |
| Copyright terms: Public domain | W3C validator |