| Step | Hyp | Ref
| Expression |
| 1 | | simpll 767 |
. . . 4
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝐷 ∈ Fin) |
| 2 | | evpmodpmf1o.s |
. . . . . . 7
⊢ 𝑆 = (SymGrp‘𝐷) |
| 3 | 2 | symggrp 19418 |
. . . . . 6
⊢ (𝐷 ∈ Fin → 𝑆 ∈ Grp) |
| 4 | 3 | ad2antrr 726 |
. . . . 5
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝑆 ∈ Grp) |
| 5 | | eldifi 4131 |
. . . . . 6
⊢ (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) → 𝐹 ∈ 𝑃) |
| 6 | 5 | ad2antlr 727 |
. . . . 5
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝐹 ∈ 𝑃) |
| 7 | | evpmodpmf1o.p |
. . . . . . . 8
⊢ 𝑃 = (Base‘𝑆) |
| 8 | 2, 7 | evpmss 21604 |
. . . . . . 7
⊢
(pmEven‘𝐷)
⊆ 𝑃 |
| 9 | 8 | sseli 3979 |
. . . . . 6
⊢ (𝑓 ∈ (pmEven‘𝐷) → 𝑓 ∈ 𝑃) |
| 10 | 9 | adantl 481 |
. . . . 5
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝑓 ∈ 𝑃) |
| 11 | | eqid 2737 |
. . . . . 6
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 12 | 7, 11 | grpcl 18959 |
. . . . 5
⊢ ((𝑆 ∈ Grp ∧ 𝐹 ∈ 𝑃 ∧ 𝑓 ∈ 𝑃) → (𝐹(+g‘𝑆)𝑓) ∈ 𝑃) |
| 13 | 4, 6, 10, 12 | syl3anc 1373 |
. . . 4
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (𝐹(+g‘𝑆)𝑓) ∈ 𝑃) |
| 14 | | eqid 2737 |
. . . . . . . 8
⊢
(pmSgn‘𝐷) =
(pmSgn‘𝐷) |
| 15 | | eqid 2737 |
. . . . . . . 8
⊢
((mulGrp‘ℂfld) ↾s {1, -1}) =
((mulGrp‘ℂfld) ↾s {1,
-1}) |
| 16 | 2, 14, 15 | psgnghm2 21599 |
. . . . . . 7
⊢ (𝐷 ∈ Fin →
(pmSgn‘𝐷) ∈
(𝑆 GrpHom
((mulGrp‘ℂfld) ↾s {1,
-1}))) |
| 17 | 16 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (pmSgn‘𝐷) ∈ (𝑆 GrpHom
((mulGrp‘ℂfld) ↾s {1,
-1}))) |
| 18 | | prex 5437 |
. . . . . . . 8
⊢ {1, -1}
∈ V |
| 19 | | eqid 2737 |
. . . . . . . . . 10
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
| 20 | | cnfldmul 21372 |
. . . . . . . . . 10
⊢ ·
= (.r‘ℂfld) |
| 21 | 19, 20 | mgpplusg 20141 |
. . . . . . . . 9
⊢ ·
= (+g‘(mulGrp‘ℂfld)) |
| 22 | 15, 21 | ressplusg 17334 |
. . . . . . . 8
⊢ ({1, -1}
∈ V → · =
(+g‘((mulGrp‘ℂfld) ↾s
{1, -1}))) |
| 23 | 18, 22 | ax-mp 5 |
. . . . . . 7
⊢ ·
= (+g‘((mulGrp‘ℂfld)
↾s {1, -1})) |
| 24 | 7, 11, 23 | ghmlin 19239 |
. . . . . 6
⊢
(((pmSgn‘𝐷)
∈ (𝑆 GrpHom
((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹 ∈ 𝑃 ∧ 𝑓 ∈ 𝑃) → ((pmSgn‘𝐷)‘(𝐹(+g‘𝑆)𝑓)) = (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓))) |
| 25 | 17, 6, 10, 24 | syl3anc 1373 |
. . . . 5
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘(𝐹(+g‘𝑆)𝑓)) = (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓))) |
| 26 | 2, 7, 14 | psgnodpm 21606 |
. . . . . . . 8
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝐹) = -1) |
| 27 | 26 | adantr 480 |
. . . . . . 7
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝐹) = -1) |
| 28 | 2, 7, 14 | psgnevpm 21607 |
. . . . . . . 8
⊢ ((𝐷 ∈ Fin ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝑓) = 1) |
| 29 | 28 | adantlr 715 |
. . . . . . 7
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝑓) = 1) |
| 30 | 27, 29 | oveq12d 7449 |
. . . . . 6
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓)) = (-1 · 1)) |
| 31 | | ax-1cn 11213 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 32 | 31 | mulm1i 11708 |
. . . . . 6
⊢ (-1
· 1) = -1 |
| 33 | 30, 32 | eqtrdi 2793 |
. . . . 5
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓)) = -1) |
| 34 | 25, 33 | eqtrd 2777 |
. . . 4
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘(𝐹(+g‘𝑆)𝑓)) = -1) |
| 35 | 2, 7, 14 | psgnodpmr 21608 |
. . . 4
⊢ ((𝐷 ∈ Fin ∧ (𝐹(+g‘𝑆)𝑓) ∈ 𝑃 ∧ ((pmSgn‘𝐷)‘(𝐹(+g‘𝑆)𝑓)) = -1) → (𝐹(+g‘𝑆)𝑓) ∈ (𝑃 ∖ (pmEven‘𝐷))) |
| 36 | 1, 13, 34, 35 | syl3anc 1373 |
. . 3
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (𝐹(+g‘𝑆)𝑓) ∈ (𝑃 ∖ (pmEven‘𝐷))) |
| 37 | 36 | fmpttd 7135 |
. 2
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓)):(pmEven‘𝐷)⟶(𝑃 ∖ (pmEven‘𝐷))) |
| 38 | 3 | ad2antrr 726 |
. . . . 5
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑆 ∈ Grp) |
| 39 | | eqid 2737 |
. . . . . . . 8
⊢
(invg‘𝑆) = (invg‘𝑆) |
| 40 | 7, 39 | grpinvcl 19005 |
. . . . . . 7
⊢ ((𝑆 ∈ Grp ∧ 𝐹 ∈ 𝑃) → ((invg‘𝑆)‘𝐹) ∈ 𝑃) |
| 41 | 3, 5, 40 | syl2an 596 |
. . . . . 6
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((invg‘𝑆)‘𝐹) ∈ 𝑃) |
| 42 | 41 | adantr 480 |
. . . . 5
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((invg‘𝑆)‘𝐹) ∈ 𝑃) |
| 43 | | eldifi 4131 |
. . . . . 6
⊢ (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) → 𝑔 ∈ 𝑃) |
| 44 | 43 | adantl 481 |
. . . . 5
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑔 ∈ 𝑃) |
| 45 | 7, 11 | grpcl 18959 |
. . . . 5
⊢ ((𝑆 ∈ Grp ∧
((invg‘𝑆)‘𝐹) ∈ 𝑃 ∧ 𝑔 ∈ 𝑃) → (((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔) ∈ 𝑃) |
| 46 | 38, 42, 44, 45 | syl3anc 1373 |
. . . 4
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔) ∈ 𝑃) |
| 47 | 16 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (pmSgn‘𝐷) ∈ (𝑆 GrpHom
((mulGrp‘ℂfld) ↾s {1,
-1}))) |
| 48 | 7, 11, 23 | ghmlin 19239 |
. . . . . 6
⊢
(((pmSgn‘𝐷)
∈ (𝑆 GrpHom
((mulGrp‘ℂfld) ↾s {1, -1})) ∧
((invg‘𝑆)‘𝐹) ∈ 𝑃 ∧ 𝑔 ∈ 𝑃) → ((pmSgn‘𝐷)‘(((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔)) = (((pmSgn‘𝐷)‘((invg‘𝑆)‘𝐹)) · ((pmSgn‘𝐷)‘𝑔))) |
| 49 | 47, 42, 44, 48 | syl3anc 1373 |
. . . . 5
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘(((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔)) = (((pmSgn‘𝐷)‘((invg‘𝑆)‘𝐹)) · ((pmSgn‘𝐷)‘𝑔))) |
| 50 | 2, 7, 39 | symginv 19420 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝑃 → ((invg‘𝑆)‘𝐹) = ◡𝐹) |
| 51 | 5, 50 | syl 17 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) → ((invg‘𝑆)‘𝐹) = ◡𝐹) |
| 52 | 51 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((invg‘𝑆)‘𝐹) = ◡𝐹) |
| 53 | 52 | fveq2d 6910 |
. . . . . 6
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘((invg‘𝑆)‘𝐹)) = ((pmSgn‘𝐷)‘◡𝐹)) |
| 54 | 2, 7, 14 | psgnodpm 21606 |
. . . . . . 7
⊢ ((𝐷 ∈ Fin ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑔) = -1) |
| 55 | 54 | adantlr 715 |
. . . . . 6
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑔) = -1) |
| 56 | 53, 55 | oveq12d 7449 |
. . . . 5
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((pmSgn‘𝐷)‘((invg‘𝑆)‘𝐹)) · ((pmSgn‘𝐷)‘𝑔)) = (((pmSgn‘𝐷)‘◡𝐹) · -1)) |
| 57 | | simpll 767 |
. . . . . . . . 9
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝐷 ∈ Fin) |
| 58 | 5 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝐹 ∈ 𝑃) |
| 59 | 2, 14, 7 | psgninv 21600 |
. . . . . . . . 9
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((pmSgn‘𝐷)‘◡𝐹) = ((pmSgn‘𝐷)‘𝐹)) |
| 60 | 57, 58, 59 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘◡𝐹) = ((pmSgn‘𝐷)‘𝐹)) |
| 61 | 26 | adantr 480 |
. . . . . . . 8
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝐹) = -1) |
| 62 | 60, 61 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘◡𝐹) = -1) |
| 63 | 62 | oveq1d 7446 |
. . . . . 6
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((pmSgn‘𝐷)‘◡𝐹) · -1) = (-1 ·
-1)) |
| 64 | | neg1mulneg1e1 12479 |
. . . . . 6
⊢ (-1
· -1) = 1 |
| 65 | 63, 64 | eqtrdi 2793 |
. . . . 5
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((pmSgn‘𝐷)‘◡𝐹) · -1) = 1) |
| 66 | 49, 56, 65 | 3eqtrd 2781 |
. . . 4
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘(((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔)) = 1) |
| 67 | 2, 7, 14 | psgnevpmb 21605 |
. . . . 5
⊢ (𝐷 ∈ Fin →
((((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔) ∈ (pmEven‘𝐷) ↔ ((((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔) ∈ 𝑃 ∧ ((pmSgn‘𝐷)‘(((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔)) = 1))) |
| 68 | 67 | ad2antrr 726 |
. . . 4
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔) ∈ (pmEven‘𝐷) ↔ ((((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔) ∈ 𝑃 ∧ ((pmSgn‘𝐷)‘(((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔)) = 1))) |
| 69 | 46, 66, 68 | mpbir2and 713 |
. . 3
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔) ∈ (pmEven‘𝐷)) |
| 70 | 69 | fmpttd 7135 |
. 2
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔)):(𝑃 ∖ (pmEven‘𝐷))⟶(pmEven‘𝐷)) |
| 71 | | eqidd 2738 |
. . . . 5
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓)) = (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓))) |
| 72 | | eqidd 2738 |
. . . . 5
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔)) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔))) |
| 73 | | oveq2 7439 |
. . . . 5
⊢ (𝑔 = (𝐹(+g‘𝑆)𝑓) → (((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔) = (((invg‘𝑆)‘𝐹)(+g‘𝑆)(𝐹(+g‘𝑆)𝑓))) |
| 74 | 36, 71, 72, 73 | fmptco 7149 |
. . . 4
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔)) ∘ (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓))) = (𝑓 ∈ (pmEven‘𝐷) ↦ (((invg‘𝑆)‘𝐹)(+g‘𝑆)(𝐹(+g‘𝑆)𝑓)))) |
| 75 | | eqid 2737 |
. . . . . . . . 9
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 76 | 7, 11, 75, 39 | grplinv 19007 |
. . . . . . . 8
⊢ ((𝑆 ∈ Grp ∧ 𝐹 ∈ 𝑃) → (((invg‘𝑆)‘𝐹)(+g‘𝑆)𝐹) = (0g‘𝑆)) |
| 77 | 4, 6, 76 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((invg‘𝑆)‘𝐹)(+g‘𝑆)𝐹) = (0g‘𝑆)) |
| 78 | 77 | oveq1d 7446 |
. . . . . 6
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((((invg‘𝑆)‘𝐹)(+g‘𝑆)𝐹)(+g‘𝑆)𝑓) = ((0g‘𝑆)(+g‘𝑆)𝑓)) |
| 79 | 41 | adantr 480 |
. . . . . . 7
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((invg‘𝑆)‘𝐹) ∈ 𝑃) |
| 80 | 7, 11 | grpass 18960 |
. . . . . . 7
⊢ ((𝑆 ∈ Grp ∧
(((invg‘𝑆)‘𝐹) ∈ 𝑃 ∧ 𝐹 ∈ 𝑃 ∧ 𝑓 ∈ 𝑃)) → ((((invg‘𝑆)‘𝐹)(+g‘𝑆)𝐹)(+g‘𝑆)𝑓) = (((invg‘𝑆)‘𝐹)(+g‘𝑆)(𝐹(+g‘𝑆)𝑓))) |
| 81 | 4, 79, 6, 10, 80 | syl13anc 1374 |
. . . . . 6
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((((invg‘𝑆)‘𝐹)(+g‘𝑆)𝐹)(+g‘𝑆)𝑓) = (((invg‘𝑆)‘𝐹)(+g‘𝑆)(𝐹(+g‘𝑆)𝑓))) |
| 82 | 7, 11, 75 | grplid 18985 |
. . . . . . 7
⊢ ((𝑆 ∈ Grp ∧ 𝑓 ∈ 𝑃) → ((0g‘𝑆)(+g‘𝑆)𝑓) = 𝑓) |
| 83 | 4, 10, 82 | syl2anc 584 |
. . . . . 6
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((0g‘𝑆)(+g‘𝑆)𝑓) = 𝑓) |
| 84 | 78, 81, 83 | 3eqtr3d 2785 |
. . . . 5
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((invg‘𝑆)‘𝐹)(+g‘𝑆)(𝐹(+g‘𝑆)𝑓)) = 𝑓) |
| 85 | 84 | mpteq2dva 5242 |
. . . 4
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (((invg‘𝑆)‘𝐹)(+g‘𝑆)(𝐹(+g‘𝑆)𝑓))) = (𝑓 ∈ (pmEven‘𝐷) ↦ 𝑓)) |
| 86 | 74, 85 | eqtrd 2777 |
. . 3
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔)) ∘ (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓))) = (𝑓 ∈ (pmEven‘𝐷) ↦ 𝑓)) |
| 87 | | mptresid 6069 |
. . 3
⊢ ( I
↾ (pmEven‘𝐷)) =
(𝑓 ∈
(pmEven‘𝐷) ↦
𝑓) |
| 88 | 86, 87 | eqtr4di 2795 |
. 2
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔)) ∘ (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓))) = ( I ↾ (pmEven‘𝐷))) |
| 89 | | oveq2 7439 |
. . . . 5
⊢ (𝑓 =
(((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔) → (𝐹(+g‘𝑆)𝑓) = (𝐹(+g‘𝑆)(((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔))) |
| 90 | 69, 72, 71, 89 | fmptco 7149 |
. . . 4
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓)) ∘ (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔))) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (𝐹(+g‘𝑆)(((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔)))) |
| 91 | 7, 11, 75, 39 | grprinv 19008 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Grp ∧ 𝐹 ∈ 𝑃) → (𝐹(+g‘𝑆)((invg‘𝑆)‘𝐹)) = (0g‘𝑆)) |
| 92 | 3, 5, 91 | syl2an 596 |
. . . . . . . 8
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝐹(+g‘𝑆)((invg‘𝑆)‘𝐹)) = (0g‘𝑆)) |
| 93 | 92 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝐹(+g‘𝑆)((invg‘𝑆)‘𝐹))(+g‘𝑆)𝑔) = ((0g‘𝑆)(+g‘𝑆)𝑔)) |
| 94 | 93 | adantr 480 |
. . . . . 6
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝐹(+g‘𝑆)((invg‘𝑆)‘𝐹))(+g‘𝑆)𝑔) = ((0g‘𝑆)(+g‘𝑆)𝑔)) |
| 95 | 7, 11 | grpass 18960 |
. . . . . . 7
⊢ ((𝑆 ∈ Grp ∧ (𝐹 ∈ 𝑃 ∧ ((invg‘𝑆)‘𝐹) ∈ 𝑃 ∧ 𝑔 ∈ 𝑃)) → ((𝐹(+g‘𝑆)((invg‘𝑆)‘𝐹))(+g‘𝑆)𝑔) = (𝐹(+g‘𝑆)(((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔))) |
| 96 | 38, 58, 42, 44, 95 | syl13anc 1374 |
. . . . . 6
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝐹(+g‘𝑆)((invg‘𝑆)‘𝐹))(+g‘𝑆)𝑔) = (𝐹(+g‘𝑆)(((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔))) |
| 97 | 7, 11, 75 | grplid 18985 |
. . . . . . 7
⊢ ((𝑆 ∈ Grp ∧ 𝑔 ∈ 𝑃) → ((0g‘𝑆)(+g‘𝑆)𝑔) = 𝑔) |
| 98 | 38, 44, 97 | syl2anc 584 |
. . . . . 6
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((0g‘𝑆)(+g‘𝑆)𝑔) = 𝑔) |
| 99 | 94, 96, 98 | 3eqtr3d 2785 |
. . . . 5
⊢ (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝐹(+g‘𝑆)(((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔)) = 𝑔) |
| 100 | 99 | mpteq2dva 5242 |
. . . 4
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (𝐹(+g‘𝑆)(((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔))) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ 𝑔)) |
| 101 | 90, 100 | eqtrd 2777 |
. . 3
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓)) ∘ (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔))) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ 𝑔)) |
| 102 | | mptresid 6069 |
. . 3
⊢ ( I
↾ (𝑃 ∖
(pmEven‘𝐷))) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ 𝑔) |
| 103 | 101, 102 | eqtr4di 2795 |
. 2
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓)) ∘ (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg‘𝑆)‘𝐹)(+g‘𝑆)𝑔))) = ( I ↾ (𝑃 ∖ (pmEven‘𝐷)))) |
| 104 | 37, 70, 88, 103 | fcof1od 7314 |
1
⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g‘𝑆)𝑓)):(pmEven‘𝐷)–1-1-onto→(𝑃 ∖ (pmEven‘𝐷))) |