MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evpmodpmf1o Structured version   Visualization version   GIF version

Theorem evpmodpmf1o 21614
Description: The function for performing an even permutation after a fixed odd permutation is one to one onto all odd permutations. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
evpmodpmf1o.s 𝑆 = (SymGrp‘𝐷)
evpmodpmf1o.p 𝑃 = (Base‘𝑆)
Assertion
Ref Expression
evpmodpmf1o ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)):(pmEven‘𝐷)–1-1-onto→(𝑃 ∖ (pmEven‘𝐷)))
Distinct variable groups:   𝑆,𝑓   𝐷,𝑓   𝑃,𝑓   𝑓,𝐹

Proof of Theorem evpmodpmf1o
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpll 767 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝐷 ∈ Fin)
2 evpmodpmf1o.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
32symggrp 19418 . . . . . 6 (𝐷 ∈ Fin → 𝑆 ∈ Grp)
43ad2antrr 726 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝑆 ∈ Grp)
5 eldifi 4131 . . . . . 6 (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) → 𝐹𝑃)
65ad2antlr 727 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝐹𝑃)
7 evpmodpmf1o.p . . . . . . . 8 𝑃 = (Base‘𝑆)
82, 7evpmss 21604 . . . . . . 7 (pmEven‘𝐷) ⊆ 𝑃
98sseli 3979 . . . . . 6 (𝑓 ∈ (pmEven‘𝐷) → 𝑓𝑃)
109adantl 481 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝑓𝑃)
11 eqid 2737 . . . . . 6 (+g𝑆) = (+g𝑆)
127, 11grpcl 18959 . . . . 5 ((𝑆 ∈ Grp ∧ 𝐹𝑃𝑓𝑃) → (𝐹(+g𝑆)𝑓) ∈ 𝑃)
134, 6, 10, 12syl3anc 1373 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (𝐹(+g𝑆)𝑓) ∈ 𝑃)
14 eqid 2737 . . . . . . . 8 (pmSgn‘𝐷) = (pmSgn‘𝐷)
15 eqid 2737 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
162, 14, 15psgnghm2 21599 . . . . . . 7 (𝐷 ∈ Fin → (pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
1716ad2antrr 726 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
18 prex 5437 . . . . . . . 8 {1, -1} ∈ V
19 eqid 2737 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
20 cnfldmul 21372 . . . . . . . . . 10 · = (.r‘ℂfld)
2119, 20mgpplusg 20141 . . . . . . . . 9 · = (+g‘(mulGrp‘ℂfld))
2215, 21ressplusg 17334 . . . . . . . 8 ({1, -1} ∈ V → · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1})))
2318, 22ax-mp 5 . . . . . . 7 · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1}))
247, 11, 23ghmlin 19239 . . . . . 6 (((pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃𝑓𝑃) → ((pmSgn‘𝐷)‘(𝐹(+g𝑆)𝑓)) = (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓)))
2517, 6, 10, 24syl3anc 1373 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘(𝐹(+g𝑆)𝑓)) = (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓)))
262, 7, 14psgnodpm 21606 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝐹) = -1)
2726adantr 480 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝐹) = -1)
282, 7, 14psgnevpm 21607 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝑓) = 1)
2928adantlr 715 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝑓) = 1)
3027, 29oveq12d 7449 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓)) = (-1 · 1))
31 ax-1cn 11213 . . . . . . 7 1 ∈ ℂ
3231mulm1i 11708 . . . . . 6 (-1 · 1) = -1
3330, 32eqtrdi 2793 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓)) = -1)
3425, 33eqtrd 2777 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘(𝐹(+g𝑆)𝑓)) = -1)
352, 7, 14psgnodpmr 21608 . . . 4 ((𝐷 ∈ Fin ∧ (𝐹(+g𝑆)𝑓) ∈ 𝑃 ∧ ((pmSgn‘𝐷)‘(𝐹(+g𝑆)𝑓)) = -1) → (𝐹(+g𝑆)𝑓) ∈ (𝑃 ∖ (pmEven‘𝐷)))
361, 13, 34, 35syl3anc 1373 . . 3 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (𝐹(+g𝑆)𝑓) ∈ (𝑃 ∖ (pmEven‘𝐷)))
3736fmpttd 7135 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)):(pmEven‘𝐷)⟶(𝑃 ∖ (pmEven‘𝐷)))
383ad2antrr 726 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑆 ∈ Grp)
39 eqid 2737 . . . . . . . 8 (invg𝑆) = (invg𝑆)
407, 39grpinvcl 19005 . . . . . . 7 ((𝑆 ∈ Grp ∧ 𝐹𝑃) → ((invg𝑆)‘𝐹) ∈ 𝑃)
413, 5, 40syl2an 596 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((invg𝑆)‘𝐹) ∈ 𝑃)
4241adantr 480 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((invg𝑆)‘𝐹) ∈ 𝑃)
43 eldifi 4131 . . . . . 6 (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) → 𝑔𝑃)
4443adantl 481 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑔𝑃)
457, 11grpcl 18959 . . . . 5 ((𝑆 ∈ Grp ∧ ((invg𝑆)‘𝐹) ∈ 𝑃𝑔𝑃) → (((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ 𝑃)
4638, 42, 44, 45syl3anc 1373 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ 𝑃)
4716ad2antrr 726 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
487, 11, 23ghmlin 19239 . . . . . 6 (((pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ ((invg𝑆)‘𝐹) ∈ 𝑃𝑔𝑃) → ((pmSgn‘𝐷)‘(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = (((pmSgn‘𝐷)‘((invg𝑆)‘𝐹)) · ((pmSgn‘𝐷)‘𝑔)))
4947, 42, 44, 48syl3anc 1373 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = (((pmSgn‘𝐷)‘((invg𝑆)‘𝐹)) · ((pmSgn‘𝐷)‘𝑔)))
502, 7, 39symginv 19420 . . . . . . . . 9 (𝐹𝑃 → ((invg𝑆)‘𝐹) = 𝐹)
515, 50syl 17 . . . . . . . 8 (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) → ((invg𝑆)‘𝐹) = 𝐹)
5251ad2antlr 727 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((invg𝑆)‘𝐹) = 𝐹)
5352fveq2d 6910 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘((invg𝑆)‘𝐹)) = ((pmSgn‘𝐷)‘𝐹))
542, 7, 14psgnodpm 21606 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑔) = -1)
5554adantlr 715 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑔) = -1)
5653, 55oveq12d 7449 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((pmSgn‘𝐷)‘((invg𝑆)‘𝐹)) · ((pmSgn‘𝐷)‘𝑔)) = (((pmSgn‘𝐷)‘𝐹) · -1))
57 simpll 767 . . . . . . . . 9 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝐷 ∈ Fin)
585ad2antlr 727 . . . . . . . . 9 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝐹𝑃)
592, 14, 7psgninv 21600 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((pmSgn‘𝐷)‘𝐹) = ((pmSgn‘𝐷)‘𝐹))
6057, 58, 59syl2anc 584 . . . . . . . 8 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝐹) = ((pmSgn‘𝐷)‘𝐹))
6126adantr 480 . . . . . . . 8 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝐹) = -1)
6260, 61eqtrd 2777 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝐹) = -1)
6362oveq1d 7446 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((pmSgn‘𝐷)‘𝐹) · -1) = (-1 · -1))
64 neg1mulneg1e1 12479 . . . . . 6 (-1 · -1) = 1
6563, 64eqtrdi 2793 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((pmSgn‘𝐷)‘𝐹) · -1) = 1)
6649, 56, 653eqtrd 2781 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = 1)
672, 7, 14psgnevpmb 21605 . . . . 5 (𝐷 ∈ Fin → ((((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ (pmEven‘𝐷) ↔ ((((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ 𝑃 ∧ ((pmSgn‘𝐷)‘(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = 1)))
6867ad2antrr 726 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ (pmEven‘𝐷) ↔ ((((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ 𝑃 ∧ ((pmSgn‘𝐷)‘(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = 1)))
6946, 66, 68mpbir2and 713 . . 3 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ (pmEven‘𝐷))
7069fmpttd 7135 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)):(𝑃 ∖ (pmEven‘𝐷))⟶(pmEven‘𝐷))
71 eqidd 2738 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)) = (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)))
72 eqidd 2738 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)))
73 oveq2 7439 . . . . 5 (𝑔 = (𝐹(+g𝑆)𝑓) → (((invg𝑆)‘𝐹)(+g𝑆)𝑔) = (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓)))
7436, 71, 72, 73fmptco 7149 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)) ∘ (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓))) = (𝑓 ∈ (pmEven‘𝐷) ↦ (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓))))
75 eqid 2737 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
767, 11, 75, 39grplinv 19007 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝐹𝑃) → (((invg𝑆)‘𝐹)(+g𝑆)𝐹) = (0g𝑆))
774, 6, 76syl2anc 584 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((invg𝑆)‘𝐹)(+g𝑆)𝐹) = (0g𝑆))
7877oveq1d 7446 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((((invg𝑆)‘𝐹)(+g𝑆)𝐹)(+g𝑆)𝑓) = ((0g𝑆)(+g𝑆)𝑓))
7941adantr 480 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((invg𝑆)‘𝐹) ∈ 𝑃)
807, 11grpass 18960 . . . . . . 7 ((𝑆 ∈ Grp ∧ (((invg𝑆)‘𝐹) ∈ 𝑃𝐹𝑃𝑓𝑃)) → ((((invg𝑆)‘𝐹)(+g𝑆)𝐹)(+g𝑆)𝑓) = (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓)))
814, 79, 6, 10, 80syl13anc 1374 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((((invg𝑆)‘𝐹)(+g𝑆)𝐹)(+g𝑆)𝑓) = (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓)))
827, 11, 75grplid 18985 . . . . . . 7 ((𝑆 ∈ Grp ∧ 𝑓𝑃) → ((0g𝑆)(+g𝑆)𝑓) = 𝑓)
834, 10, 82syl2anc 584 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((0g𝑆)(+g𝑆)𝑓) = 𝑓)
8478, 81, 833eqtr3d 2785 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓)) = 𝑓)
8584mpteq2dva 5242 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓))) = (𝑓 ∈ (pmEven‘𝐷) ↦ 𝑓))
8674, 85eqtrd 2777 . . 3 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)) ∘ (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓))) = (𝑓 ∈ (pmEven‘𝐷) ↦ 𝑓))
87 mptresid 6069 . . 3 ( I ↾ (pmEven‘𝐷)) = (𝑓 ∈ (pmEven‘𝐷) ↦ 𝑓)
8886, 87eqtr4di 2795 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)) ∘ (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓))) = ( I ↾ (pmEven‘𝐷)))
89 oveq2 7439 . . . . 5 (𝑓 = (((invg𝑆)‘𝐹)(+g𝑆)𝑔) → (𝐹(+g𝑆)𝑓) = (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔)))
9069, 72, 71, 89fmptco 7149 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)) ∘ (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔))) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔))))
917, 11, 75, 39grprinv 19008 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝐹𝑃) → (𝐹(+g𝑆)((invg𝑆)‘𝐹)) = (0g𝑆))
923, 5, 91syl2an 596 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝐹(+g𝑆)((invg𝑆)‘𝐹)) = (0g𝑆))
9392oveq1d 7446 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝐹(+g𝑆)((invg𝑆)‘𝐹))(+g𝑆)𝑔) = ((0g𝑆)(+g𝑆)𝑔))
9493adantr 480 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝐹(+g𝑆)((invg𝑆)‘𝐹))(+g𝑆)𝑔) = ((0g𝑆)(+g𝑆)𝑔))
957, 11grpass 18960 . . . . . . 7 ((𝑆 ∈ Grp ∧ (𝐹𝑃 ∧ ((invg𝑆)‘𝐹) ∈ 𝑃𝑔𝑃)) → ((𝐹(+g𝑆)((invg𝑆)‘𝐹))(+g𝑆)𝑔) = (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔)))
9638, 58, 42, 44, 95syl13anc 1374 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝐹(+g𝑆)((invg𝑆)‘𝐹))(+g𝑆)𝑔) = (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔)))
977, 11, 75grplid 18985 . . . . . . 7 ((𝑆 ∈ Grp ∧ 𝑔𝑃) → ((0g𝑆)(+g𝑆)𝑔) = 𝑔)
9838, 44, 97syl2anc 584 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((0g𝑆)(+g𝑆)𝑔) = 𝑔)
9994, 96, 983eqtr3d 2785 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = 𝑔)
10099mpteq2dva 5242 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔))) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ 𝑔))
10190, 100eqtrd 2777 . . 3 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)) ∘ (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔))) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ 𝑔))
102 mptresid 6069 . . 3 ( I ↾ (𝑃 ∖ (pmEven‘𝐷))) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ 𝑔)
103101, 102eqtr4di 2795 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)) ∘ (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔))) = ( I ↾ (𝑃 ∖ (pmEven‘𝐷))))
10437, 70, 88, 103fcof1od 7314 1 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)):(pmEven‘𝐷)–1-1-onto→(𝑃 ∖ (pmEven‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cdif 3948  {cpr 4628  cmpt 5225   I cid 5577  ccnv 5684  cres 5687  ccom 5689  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  Fincfn 8985  1c1 11156   · cmul 11160  -cneg 11493  Basecbs 17247  s cress 17274  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952   GrpHom cghm 19230  SymGrpcsymg 19386  pmSgncpsgn 19507  pmEvencevpm 19508  mulGrpcmgp 20137  fldccnfld 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-splice 14788  df-reverse 14797  df-s2 14887  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-gsum 17487  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-efmnd 18882  df-grp 18954  df-minusg 18955  df-subg 19141  df-ghm 19231  df-gim 19277  df-oppg 19364  df-symg 19387  df-pmtr 19460  df-psgn 19509  df-evpm 19510  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-drng 20731  df-cnfld 21365
This theorem is referenced by:  mdetralt  22614
  Copyright terms: Public domain W3C validator