MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evpmodpmf1o Structured version   Visualization version   GIF version

Theorem evpmodpmf1o 20422
Description: The function for performing an even permutation after a fixed odd permutation is one to one onto all odd permutations. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
evpmodpmf1o.s 𝑆 = (SymGrp‘𝐷)
evpmodpmf1o.p 𝑃 = (Base‘𝑆)
Assertion
Ref Expression
evpmodpmf1o ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)):(pmEven‘𝐷)–1-1-onto→(𝑃 ∖ (pmEven‘𝐷)))
Distinct variable groups:   𝑆,𝑓   𝐷,𝑓   𝑃,𝑓   𝑓,𝐹

Proof of Theorem evpmodpmf1o
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpll 763 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝐷 ∈ Fin)
2 evpmodpmf1o.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
32symggrp 18259 . . . . . 6 (𝐷 ∈ Fin → 𝑆 ∈ Grp)
43ad2antrr 722 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝑆 ∈ Grp)
5 eldifi 4024 . . . . . 6 (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) → 𝐹𝑃)
65ad2antlr 723 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝐹𝑃)
7 evpmodpmf1o.p . . . . . . . 8 𝑃 = (Base‘𝑆)
82, 7evpmss 20412 . . . . . . 7 (pmEven‘𝐷) ⊆ 𝑃
98sseli 3885 . . . . . 6 (𝑓 ∈ (pmEven‘𝐷) → 𝑓𝑃)
109adantl 482 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝑓𝑃)
11 eqid 2795 . . . . . 6 (+g𝑆) = (+g𝑆)
127, 11grpcl 17869 . . . . 5 ((𝑆 ∈ Grp ∧ 𝐹𝑃𝑓𝑃) → (𝐹(+g𝑆)𝑓) ∈ 𝑃)
134, 6, 10, 12syl3anc 1364 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (𝐹(+g𝑆)𝑓) ∈ 𝑃)
14 eqid 2795 . . . . . . . 8 (pmSgn‘𝐷) = (pmSgn‘𝐷)
15 eqid 2795 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
162, 14, 15psgnghm2 20407 . . . . . . 7 (𝐷 ∈ Fin → (pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
1716ad2antrr 722 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
18 prex 5224 . . . . . . . 8 {1, -1} ∈ V
19 eqid 2795 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
20 cnfldmul 20233 . . . . . . . . . 10 · = (.r‘ℂfld)
2119, 20mgpplusg 18933 . . . . . . . . 9 · = (+g‘(mulGrp‘ℂfld))
2215, 21ressplusg 16441 . . . . . . . 8 ({1, -1} ∈ V → · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1})))
2318, 22ax-mp 5 . . . . . . 7 · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1}))
247, 11, 23ghmlin 18104 . . . . . 6 (((pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃𝑓𝑃) → ((pmSgn‘𝐷)‘(𝐹(+g𝑆)𝑓)) = (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓)))
2517, 6, 10, 24syl3anc 1364 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘(𝐹(+g𝑆)𝑓)) = (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓)))
262, 7, 14psgnodpm 20414 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝐹) = -1)
2726adantr 481 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝐹) = -1)
282, 7, 14psgnevpm 20415 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝑓) = 1)
2928adantlr 711 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝑓) = 1)
3027, 29oveq12d 7034 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓)) = (-1 · 1))
31 ax-1cn 10441 . . . . . . 7 1 ∈ ℂ
3231mulm1i 10933 . . . . . 6 (-1 · 1) = -1
3330, 32syl6eq 2847 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓)) = -1)
3425, 33eqtrd 2831 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘(𝐹(+g𝑆)𝑓)) = -1)
352, 7, 14psgnodpmr 20416 . . . 4 ((𝐷 ∈ Fin ∧ (𝐹(+g𝑆)𝑓) ∈ 𝑃 ∧ ((pmSgn‘𝐷)‘(𝐹(+g𝑆)𝑓)) = -1) → (𝐹(+g𝑆)𝑓) ∈ (𝑃 ∖ (pmEven‘𝐷)))
361, 13, 34, 35syl3anc 1364 . . 3 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (𝐹(+g𝑆)𝑓) ∈ (𝑃 ∖ (pmEven‘𝐷)))
3736fmpttd 6742 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)):(pmEven‘𝐷)⟶(𝑃 ∖ (pmEven‘𝐷)))
383ad2antrr 722 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑆 ∈ Grp)
39 eqid 2795 . . . . . . . 8 (invg𝑆) = (invg𝑆)
407, 39grpinvcl 17908 . . . . . . 7 ((𝑆 ∈ Grp ∧ 𝐹𝑃) → ((invg𝑆)‘𝐹) ∈ 𝑃)
413, 5, 40syl2an 595 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((invg𝑆)‘𝐹) ∈ 𝑃)
4241adantr 481 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((invg𝑆)‘𝐹) ∈ 𝑃)
43 eldifi 4024 . . . . . 6 (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) → 𝑔𝑃)
4443adantl 482 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑔𝑃)
457, 11grpcl 17869 . . . . 5 ((𝑆 ∈ Grp ∧ ((invg𝑆)‘𝐹) ∈ 𝑃𝑔𝑃) → (((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ 𝑃)
4638, 42, 44, 45syl3anc 1364 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ 𝑃)
4716ad2antrr 722 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
487, 11, 23ghmlin 18104 . . . . . 6 (((pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ ((invg𝑆)‘𝐹) ∈ 𝑃𝑔𝑃) → ((pmSgn‘𝐷)‘(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = (((pmSgn‘𝐷)‘((invg𝑆)‘𝐹)) · ((pmSgn‘𝐷)‘𝑔)))
4947, 42, 44, 48syl3anc 1364 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = (((pmSgn‘𝐷)‘((invg𝑆)‘𝐹)) · ((pmSgn‘𝐷)‘𝑔)))
502, 7, 39symginv 18261 . . . . . . . . 9 (𝐹𝑃 → ((invg𝑆)‘𝐹) = 𝐹)
515, 50syl 17 . . . . . . . 8 (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) → ((invg𝑆)‘𝐹) = 𝐹)
5251ad2antlr 723 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((invg𝑆)‘𝐹) = 𝐹)
5352fveq2d 6542 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘((invg𝑆)‘𝐹)) = ((pmSgn‘𝐷)‘𝐹))
542, 7, 14psgnodpm 20414 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑔) = -1)
5554adantlr 711 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑔) = -1)
5653, 55oveq12d 7034 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((pmSgn‘𝐷)‘((invg𝑆)‘𝐹)) · ((pmSgn‘𝐷)‘𝑔)) = (((pmSgn‘𝐷)‘𝐹) · -1))
57 simpll 763 . . . . . . . . 9 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝐷 ∈ Fin)
585ad2antlr 723 . . . . . . . . 9 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝐹𝑃)
592, 14, 7psgninv 20408 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((pmSgn‘𝐷)‘𝐹) = ((pmSgn‘𝐷)‘𝐹))
6057, 58, 59syl2anc 584 . . . . . . . 8 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝐹) = ((pmSgn‘𝐷)‘𝐹))
6126adantr 481 . . . . . . . 8 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝐹) = -1)
6260, 61eqtrd 2831 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝐹) = -1)
6362oveq1d 7031 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((pmSgn‘𝐷)‘𝐹) · -1) = (-1 · -1))
64 neg1mulneg1e1 11698 . . . . . 6 (-1 · -1) = 1
6563, 64syl6eq 2847 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((pmSgn‘𝐷)‘𝐹) · -1) = 1)
6649, 56, 653eqtrd 2835 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = 1)
672, 7, 14psgnevpmb 20413 . . . . 5 (𝐷 ∈ Fin → ((((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ (pmEven‘𝐷) ↔ ((((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ 𝑃 ∧ ((pmSgn‘𝐷)‘(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = 1)))
6867ad2antrr 722 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ (pmEven‘𝐷) ↔ ((((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ 𝑃 ∧ ((pmSgn‘𝐷)‘(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = 1)))
6946, 66, 68mpbir2and 709 . . 3 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ (pmEven‘𝐷))
7069fmpttd 6742 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)):(𝑃 ∖ (pmEven‘𝐷))⟶(pmEven‘𝐷))
71 eqidd 2796 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)) = (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)))
72 eqidd 2796 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)))
73 oveq2 7024 . . . . 5 (𝑔 = (𝐹(+g𝑆)𝑓) → (((invg𝑆)‘𝐹)(+g𝑆)𝑔) = (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓)))
7436, 71, 72, 73fmptco 6754 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)) ∘ (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓))) = (𝑓 ∈ (pmEven‘𝐷) ↦ (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓))))
75 eqid 2795 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
767, 11, 75, 39grplinv 17909 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝐹𝑃) → (((invg𝑆)‘𝐹)(+g𝑆)𝐹) = (0g𝑆))
774, 6, 76syl2anc 584 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((invg𝑆)‘𝐹)(+g𝑆)𝐹) = (0g𝑆))
7877oveq1d 7031 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((((invg𝑆)‘𝐹)(+g𝑆)𝐹)(+g𝑆)𝑓) = ((0g𝑆)(+g𝑆)𝑓))
7941adantr 481 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((invg𝑆)‘𝐹) ∈ 𝑃)
807, 11grpass 17870 . . . . . . 7 ((𝑆 ∈ Grp ∧ (((invg𝑆)‘𝐹) ∈ 𝑃𝐹𝑃𝑓𝑃)) → ((((invg𝑆)‘𝐹)(+g𝑆)𝐹)(+g𝑆)𝑓) = (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓)))
814, 79, 6, 10, 80syl13anc 1365 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((((invg𝑆)‘𝐹)(+g𝑆)𝐹)(+g𝑆)𝑓) = (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓)))
827, 11, 75grplid 17891 . . . . . . 7 ((𝑆 ∈ Grp ∧ 𝑓𝑃) → ((0g𝑆)(+g𝑆)𝑓) = 𝑓)
834, 10, 82syl2anc 584 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((0g𝑆)(+g𝑆)𝑓) = 𝑓)
8478, 81, 833eqtr3d 2839 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓)) = 𝑓)
8584mpteq2dva 5055 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓))) = (𝑓 ∈ (pmEven‘𝐷) ↦ 𝑓))
8674, 85eqtrd 2831 . . 3 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)) ∘ (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓))) = (𝑓 ∈ (pmEven‘𝐷) ↦ 𝑓))
87 mptresid 5798 . . 3 (𝑓 ∈ (pmEven‘𝐷) ↦ 𝑓) = ( I ↾ (pmEven‘𝐷))
8886, 87syl6eq 2847 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)) ∘ (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓))) = ( I ↾ (pmEven‘𝐷)))
89 oveq2 7024 . . . . 5 (𝑓 = (((invg𝑆)‘𝐹)(+g𝑆)𝑔) → (𝐹(+g𝑆)𝑓) = (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔)))
9069, 72, 71, 89fmptco 6754 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)) ∘ (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔))) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔))))
917, 11, 75, 39grprinv 17910 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝐹𝑃) → (𝐹(+g𝑆)((invg𝑆)‘𝐹)) = (0g𝑆))
923, 5, 91syl2an 595 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝐹(+g𝑆)((invg𝑆)‘𝐹)) = (0g𝑆))
9392oveq1d 7031 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝐹(+g𝑆)((invg𝑆)‘𝐹))(+g𝑆)𝑔) = ((0g𝑆)(+g𝑆)𝑔))
9493adantr 481 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝐹(+g𝑆)((invg𝑆)‘𝐹))(+g𝑆)𝑔) = ((0g𝑆)(+g𝑆)𝑔))
957, 11grpass 17870 . . . . . . 7 ((𝑆 ∈ Grp ∧ (𝐹𝑃 ∧ ((invg𝑆)‘𝐹) ∈ 𝑃𝑔𝑃)) → ((𝐹(+g𝑆)((invg𝑆)‘𝐹))(+g𝑆)𝑔) = (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔)))
9638, 58, 42, 44, 95syl13anc 1365 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝐹(+g𝑆)((invg𝑆)‘𝐹))(+g𝑆)𝑔) = (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔)))
977, 11, 75grplid 17891 . . . . . . 7 ((𝑆 ∈ Grp ∧ 𝑔𝑃) → ((0g𝑆)(+g𝑆)𝑔) = 𝑔)
9838, 44, 97syl2anc 584 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((0g𝑆)(+g𝑆)𝑔) = 𝑔)
9994, 96, 983eqtr3d 2839 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = 𝑔)
10099mpteq2dva 5055 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔))) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ 𝑔))
10190, 100eqtrd 2831 . . 3 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)) ∘ (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔))) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ 𝑔))
102 mptresid 5798 . . 3 (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ 𝑔) = ( I ↾ (𝑃 ∖ (pmEven‘𝐷)))
103101, 102syl6eq 2847 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)) ∘ (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔))) = ( I ↾ (𝑃 ∖ (pmEven‘𝐷))))
10437, 70, 88, 103fcof1od 6915 1 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)):(pmEven‘𝐷)–1-1-onto→(𝑃 ∖ (pmEven‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  Vcvv 3437  cdif 3856  {cpr 4474  cmpt 5041   I cid 5347  ccnv 5442  cres 5445  ccom 5447  1-1-ontowf1o 6224  cfv 6225  (class class class)co 7016  Fincfn 8357  1c1 10384   · cmul 10388  -cneg 10718  Basecbs 16312  s cress 16313  +gcplusg 16394  0gc0g 16542  Grpcgrp 17861  invgcminusg 17862   GrpHom cghm 18096  SymGrpcsymg 18236  pmSgncpsgn 18348  pmEvencevpm 18349  mulGrpcmgp 18929  fldccnfld 20227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-xor 1497  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-ot 4481  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-xnn0 11816  df-z 11830  df-dec 11948  df-uz 12094  df-rp 12240  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-word 13708  df-lsw 13761  df-concat 13769  df-s1 13794  df-substr 13839  df-pfx 13869  df-splice 13948  df-reverse 13957  df-s2 14046  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-0g 16544  df-gsum 16545  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-submnd 17775  df-grp 17864  df-minusg 17865  df-subg 18030  df-ghm 18097  df-gim 18140  df-oppg 18215  df-symg 18237  df-pmtr 18301  df-psgn 18350  df-evpm 18351  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-cring 18990  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-invr 19112  df-dvr 19123  df-drng 19194  df-cnfld 20228
This theorem is referenced by:  mdetralt  20901
  Copyright terms: Public domain W3C validator