MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catciso Structured version   Visualization version   GIF version

Theorem catciso 18164
Description: A functor is an isomorphism of categories if and only if it is full and faithful, and is a bijection on the objects. Remark 3.28(2) in [Adamek] p. 34. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
catciso.c 𝐶 = (CatCat‘𝑈)
catciso.b 𝐵 = (Base‘𝐶)
catciso.r 𝑅 = (Base‘𝑋)
catciso.s 𝑆 = (Base‘𝑌)
catciso.u (𝜑𝑈𝑉)
catciso.x (𝜑𝑋𝐵)
catciso.y (𝜑𝑌𝐵)
catciso.i 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
catciso (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)))

Proof of Theorem catciso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17912 . . . . 5 Rel (𝑋 Func 𝑌)
2 catciso.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐶)
3 eqid 2734 . . . . . . . . . . . . . 14 (Inv‘𝐶) = (Inv‘𝐶)
4 catciso.u . . . . . . . . . . . . . . 15 (𝜑𝑈𝑉)
5 catciso.c . . . . . . . . . . . . . . . 16 𝐶 = (CatCat‘𝑈)
65catccat 18161 . . . . . . . . . . . . . . 15 (𝑈𝑉𝐶 ∈ Cat)
74, 6syl 17 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ Cat)
8 catciso.x . . . . . . . . . . . . . 14 (𝜑𝑋𝐵)
9 catciso.y . . . . . . . . . . . . . 14 (𝜑𝑌𝐵)
10 catciso.i . . . . . . . . . . . . . 14 𝐼 = (Iso‘𝐶)
112, 3, 7, 8, 9, 10isoval 17812 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
1211eleq2d 2824 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
1312biimpa 476 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))
147adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐶 ∈ Cat)
158adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝑋𝐵)
169adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝑌𝐵)
172, 3, 14, 15, 16invfun 17811 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → Fun (𝑋(Inv‘𝐶)𝑌))
18 funfvbrb 7070 . . . . . . . . . . . 12 (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
1917, 18syl 17 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
2013, 19mpbid 232 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))
21 eqid 2734 . . . . . . . . . . 11 (Sect‘𝐶) = (Sect‘𝐶)
222, 3, 14, 15, 16, 21isinv 17807 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)))
2320, 22mpbid 232 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹))
2423simpld 494 . . . . . . . 8 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))
25 eqid 2734 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
26 eqid 2734 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
27 eqid 2734 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
282, 25, 26, 27, 21, 14, 15, 16issect 17800 . . . . . . . 8 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
2924, 28mpbid 232 . . . . . . 7 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
3029simp1d 1141 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
315, 2, 4, 25, 8, 9catchom 18156 . . . . . . 7 (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 Func 𝑌))
3231adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 Func 𝑌))
3330, 32eleqtrd 2840 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹 ∈ (𝑋 Func 𝑌))
34 1st2nd 8062 . . . . 5 ((Rel (𝑋 Func 𝑌) ∧ 𝐹 ∈ (𝑋 Func 𝑌)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
351, 33, 34sylancr 587 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
36 1st2ndbr 8065 . . . . . . 7 ((Rel (𝑋 Func 𝑌) ∧ 𝐹 ∈ (𝑋 Func 𝑌)) → (1st𝐹)(𝑋 Func 𝑌)(2nd𝐹))
371, 33, 36sylancr 587 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st𝐹)(𝑋 Func 𝑌)(2nd𝐹))
38 catciso.r . . . . . . . . 9 𝑅 = (Base‘𝑋)
39 eqid 2734 . . . . . . . . 9 (Hom ‘𝑋) = (Hom ‘𝑋)
40 eqid 2734 . . . . . . . . 9 (Hom ‘𝑌) = (Hom ‘𝑌)
4137adantr 480 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (1st𝐹)(𝑋 Func 𝑌)(2nd𝐹))
42 simprl 771 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
43 simprr 773 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
4438, 39, 40, 41, 42, 43funcf2 17918 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
45 catciso.s . . . . . . . . . 10 𝑆 = (Base‘𝑌)
46 relfunc 17912 . . . . . . . . . . . 12 Rel (𝑌 Func 𝑋)
4729simp2d 1142 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋))
485, 2, 4, 25, 9, 8catchom 18156 . . . . . . . . . . . . . 14 (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 Func 𝑋))
4948adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 Func 𝑋))
5047, 49eleqtrd 2840 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌 Func 𝑋))
51 1st2ndbr 8065 . . . . . . . . . . . 12 ((Rel (𝑌 Func 𝑋) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌 Func 𝑋)) → (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))(𝑌 Func 𝑋)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
5246, 50, 51sylancr 587 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))(𝑌 Func 𝑋)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
5352adantr 480 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))(𝑌 Func 𝑋)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
5438, 45, 41funcf1 17916 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (1st𝐹):𝑅𝑆)
5554, 42ffvelcdmd 7104 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st𝐹)‘𝑥) ∈ 𝑆)
5654, 43ffvelcdmd 7104 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st𝐹)‘𝑦) ∈ 𝑆)
5745, 40, 39, 53, 55, 56funcf2 17918 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))⟶(((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(Hom ‘𝑋)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))))
5829simp3d 1143 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
594adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝑈𝑉)
605, 2, 59, 26, 15, 16, 15, 33, 50catcco 18158 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = (((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))
61 eqid 2734 . . . . . . . . . . . . . . . . . 18 (idfunc𝑋) = (idfunc𝑋)
625, 2, 27, 61, 4, 8catcid 18160 . . . . . . . . . . . . . . . . 17 (𝜑 → ((Id‘𝐶)‘𝑋) = (idfunc𝑋))
6362adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((Id‘𝐶)‘𝑋) = (idfunc𝑋))
6458, 60, 633eqtr3d 2782 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹) = (idfunc𝑋))
6564adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹) = (idfunc𝑋))
6665fveq2d 6910 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹)) = (1st ‘(idfunc𝑋)))
6766fveq1d 6908 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))‘𝑥) = ((1st ‘(idfunc𝑋))‘𝑥))
6833adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝐹 ∈ (𝑋 Func 𝑌))
6950adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌 Func 𝑋))
7038, 68, 69, 42cofu1 17934 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))‘𝑥) = ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥)))
715, 2, 4catcbas 18154 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝑈 ∩ Cat))
72 inss2 4245 . . . . . . . . . . . . . . . 16 (𝑈 ∩ Cat) ⊆ Cat
7371, 72eqsstrdi 4049 . . . . . . . . . . . . . . 15 (𝜑𝐵 ⊆ Cat)
7473, 8sseldd 3995 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ Cat)
7574ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑋 ∈ Cat)
7661, 38, 75, 42idfu1 17930 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(idfunc𝑋))‘𝑥) = 𝑥)
7767, 70, 763eqtr3d 2782 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥)) = 𝑥)
7866fveq1d 6908 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))‘𝑦) = ((1st ‘(idfunc𝑋))‘𝑦))
7938, 68, 69, 43cofu1 17934 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))‘𝑦) = ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦)))
8061, 38, 75, 43idfu1 17930 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(idfunc𝑋))‘𝑦) = 𝑦)
8178, 79, 803eqtr3d 2782 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦)) = 𝑦)
8277, 81oveq12d 7448 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(Hom ‘𝑋)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))) = (𝑥(Hom ‘𝑋)𝑦))
8382feq3d 6723 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))⟶(((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(Hom ‘𝑋)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))) ↔ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))⟶(𝑥(Hom ‘𝑋)𝑦)))
8457, 83mpbid 232 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))⟶(𝑥(Hom ‘𝑋)𝑦))
8565fveq2d 6910 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (2nd ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹)) = (2nd ‘(idfunc𝑋)))
8685oveqd 7447 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))𝑦) = (𝑥(2nd ‘(idfunc𝑋))𝑦))
8738, 68, 69, 42, 43cofu2nd 17935 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))𝑦) = ((((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
8861, 38, 75, 39, 42, 43idfu2nd 17927 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd ‘(idfunc𝑋))𝑦) = ( I ↾ (𝑥(Hom ‘𝑋)𝑦)))
8986, 87, 883eqtr3d 2782 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) = ( I ↾ (𝑥(Hom ‘𝑋)𝑦)))
9023simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
912, 25, 26, 27, 21, 14, 16, 15issect 17800 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((Id‘𝐶)‘𝑌))))
9290, 91mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((Id‘𝐶)‘𝑌)))
9392simp3d 1143 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((Id‘𝐶)‘𝑌))
945, 2, 59, 26, 16, 15, 16, 50, 33catcco 18158 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = (𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
95 eqid 2734 . . . . . . . . . . . . . . 15 (idfunc𝑌) = (idfunc𝑌)
965, 2, 27, 95, 4, 9catcid 18160 . . . . . . . . . . . . . 14 (𝜑 → ((Id‘𝐶)‘𝑌) = (idfunc𝑌))
9796adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((Id‘𝐶)‘𝑌) = (idfunc𝑌))
9893, 94, 973eqtr3d 2782 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = (idfunc𝑌))
9998adantr 480 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = (idfunc𝑌))
10099fveq2d 6910 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (2nd ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = (2nd ‘(idfunc𝑌)))
101100oveqd 7447 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)))((1st𝐹)‘𝑦)) = (((1st𝐹)‘𝑥)(2nd ‘(idfunc𝑌))((1st𝐹)‘𝑦)))
10245, 69, 68, 55, 56cofu2nd 17935 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)))((1st𝐹)‘𝑦)) = ((((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(2nd𝐹)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))) ∘ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦))))
10377, 81oveq12d 7448 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(2nd𝐹)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))) = (𝑥(2nd𝐹)𝑦))
104103coeq1d 5874 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(2nd𝐹)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))) ∘ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦))) = ((𝑥(2nd𝐹)𝑦) ∘ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦))))
105102, 104eqtrd 2774 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)))((1st𝐹)‘𝑦)) = ((𝑥(2nd𝐹)𝑦) ∘ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦))))
10673ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝐵 ⊆ Cat)
1079ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑌𝐵)
108106, 107sseldd 3995 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑌 ∈ Cat)
10995, 45, 108, 40, 55, 56idfu2nd 17927 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘(idfunc𝑌))((1st𝐹)‘𝑦)) = ( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))))
110101, 105, 1093eqtr3d 2782 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥(2nd𝐹)𝑦) ∘ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦))) = ( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))))
11144, 84, 89, 110fcof1od 7313 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
112111ralrimivva 3199 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ∀𝑥𝑅𝑦𝑅 (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
11338, 39, 40isffth2 17969 . . . . . 6 ((1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹) ↔ ((1st𝐹)(𝑋 Func 𝑌)(2nd𝐹) ∧ ∀𝑥𝑅𝑦𝑅 (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))))
11437, 112, 113sylanbrc 583 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹))
115 df-br 5148 . . . . 5 ((1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹) ↔ ⟨(1st𝐹), (2nd𝐹)⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
116114, 115sylib 218 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ⟨(1st𝐹), (2nd𝐹)⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
11735, 116eqeltrd 2838 . . 3 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
11838, 45, 37funcf1 17916 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st𝐹):𝑅𝑆)
11945, 38, 52funcf1 17916 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)):𝑆𝑅)
12064fveq2d 6910 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹)) = (1st ‘(idfunc𝑋)))
12138, 33, 50cofu1st 17933 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹)) = ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)) ∘ (1st𝐹)))
12274adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝑋 ∈ Cat)
12361, 38, 122idfu1st 17929 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(idfunc𝑋)) = ( I ↾ 𝑅))
124120, 121, 1233eqtr3d 2782 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)) ∘ (1st𝐹)) = ( I ↾ 𝑅))
12598fveq2d 6910 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = (1st ‘(idfunc𝑌)))
12645, 50, 33cofu1st 17933 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = ((1st𝐹) ∘ (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))))
12773, 9sseldd 3995 . . . . . . 7 (𝜑𝑌 ∈ Cat)
128127adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝑌 ∈ Cat)
12995, 45, 128idfu1st 17929 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(idfunc𝑌)) = ( I ↾ 𝑆))
130125, 126, 1293eqtr3d 2782 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((1st𝐹) ∘ (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = ( I ↾ 𝑆))
131118, 119, 124, 130fcof1od 7313 . . 3 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st𝐹):𝑅1-1-onto𝑆)
132117, 131jca 511 . 2 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆))
1337adantr 480 . . 3 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐶 ∈ Cat)
1348adantr 480 . . 3 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝑋𝐵)
1359adantr 480 . . 3 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝑌𝐵)
136 inss1 4244 . . . . . . 7 ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Full 𝑌)
137 fullfunc 17959 . . . . . . 7 (𝑋 Full 𝑌) ⊆ (𝑋 Func 𝑌)
138136, 137sstri 4004 . . . . . 6 ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Func 𝑌)
139 simprl 771 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
140138, 139sselid 3992 . . . . 5 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐹 ∈ (𝑋 Func 𝑌))
1411, 140, 34sylancr 587 . . . 4 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
1424adantr 480 . . . . 5 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝑈𝑉)
143 eqid 2734 . . . . 5 (𝑥𝑆, 𝑦𝑆(((1st𝐹)‘𝑥)(2nd𝐹)((1st𝐹)‘𝑦))) = (𝑥𝑆, 𝑦𝑆(((1st𝐹)‘𝑥)(2nd𝐹)((1st𝐹)‘𝑦)))
144141, 139eqeltrrd 2839 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → ⟨(1st𝐹), (2nd𝐹)⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
145144, 115sylibr 234 . . . . 5 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → (1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹))
146 simprr 773 . . . . 5 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → (1st𝐹):𝑅1-1-onto𝑆)
1475, 2, 38, 45, 142, 134, 135, 3, 143, 145, 146catcisolem 18163 . . . 4 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → ⟨(1st𝐹), (2nd𝐹)⟩(𝑋(Inv‘𝐶)𝑌)⟨(1st𝐹), (𝑥𝑆, 𝑦𝑆(((1st𝐹)‘𝑥)(2nd𝐹)((1st𝐹)‘𝑦)))⟩)
148141, 147eqbrtrd 5169 . . 3 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐹(𝑋(Inv‘𝐶)𝑌)⟨(1st𝐹), (𝑥𝑆, 𝑦𝑆(((1st𝐹)‘𝑥)(2nd𝐹)((1st𝐹)‘𝑦)))⟩)
1492, 3, 133, 134, 135, 10, 148inviso1 17813 . 2 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐹 ∈ (𝑋𝐼𝑌))
150132, 149impbida 801 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  cin 3961  wss 3962  cop 4636   class class class wbr 5147   I cid 5581  ccnv 5687  dom cdm 5688  cres 5690  ccom 5692  Rel wrel 5693  Fun wfun 6556  wf 6558  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  cmpo 7432  1st c1st 8010  2nd c2nd 8011  Basecbs 17244  Hom chom 17308  compcco 17309  Catccat 17708  Idccid 17709  Sectcsect 17791  Invcinv 17792  Isociso 17793   Func cfunc 17904  idfunccidfu 17905  func ccofu 17906   Full cful 17955   Faith cfth 17956  CatCatccatc 18151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-hom 17321  df-cco 17322  df-cat 17712  df-cid 17713  df-sect 17794  df-inv 17795  df-iso 17796  df-func 17908  df-idfu 17909  df-cofu 17910  df-full 17957  df-fth 17958  df-catc 18152
This theorem is referenced by:  yoniso  18341  thincciso  48848
  Copyright terms: Public domain W3C validator