MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catciso Structured version   Visualization version   GIF version

Theorem catciso 18054
Description: A functor is an isomorphism of categories if and only if it is full and faithful, and is a bijection on the objects. Remark 3.28(2) in [Adamek] p. 34. Note that "catciso.u" is redundant thanks to elbasfv 17162. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
catciso.c 𝐶 = (CatCat‘𝑈)
catciso.b 𝐵 = (Base‘𝐶)
catciso.r 𝑅 = (Base‘𝑋)
catciso.s 𝑆 = (Base‘𝑌)
catciso.u (𝜑𝑈𝑉)
catciso.x (𝜑𝑋𝐵)
catciso.y (𝜑𝑌𝐵)
catciso.i 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
catciso (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)))

Proof of Theorem catciso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17805 . . . . 5 Rel (𝑋 Func 𝑌)
2 catciso.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐶)
3 eqid 2729 . . . . . . . . . . . . . 14 (Inv‘𝐶) = (Inv‘𝐶)
4 catciso.u . . . . . . . . . . . . . . 15 (𝜑𝑈𝑉)
5 catciso.c . . . . . . . . . . . . . . . 16 𝐶 = (CatCat‘𝑈)
65catccat 18051 . . . . . . . . . . . . . . 15 (𝑈𝑉𝐶 ∈ Cat)
74, 6syl 17 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ Cat)
8 catciso.x . . . . . . . . . . . . . 14 (𝜑𝑋𝐵)
9 catciso.y . . . . . . . . . . . . . 14 (𝜑𝑌𝐵)
10 catciso.i . . . . . . . . . . . . . 14 𝐼 = (Iso‘𝐶)
112, 3, 7, 8, 9, 10isoval 17708 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
1211eleq2d 2814 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
1312biimpa 476 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))
147adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐶 ∈ Cat)
158adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝑋𝐵)
169adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝑌𝐵)
172, 3, 14, 15, 16invfun 17707 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → Fun (𝑋(Inv‘𝐶)𝑌))
18 funfvbrb 7005 . . . . . . . . . . . 12 (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
1917, 18syl 17 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
2013, 19mpbid 232 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))
21 eqid 2729 . . . . . . . . . . 11 (Sect‘𝐶) = (Sect‘𝐶)
222, 3, 14, 15, 16, 21isinv 17703 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)))
2320, 22mpbid 232 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹))
2423simpld 494 . . . . . . . 8 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))
25 eqid 2729 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
26 eqid 2729 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
27 eqid 2729 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
282, 25, 26, 27, 21, 14, 15, 16issect 17696 . . . . . . . 8 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
2924, 28mpbid 232 . . . . . . 7 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
3029simp1d 1142 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
315, 2, 4, 25, 8, 9catchom 18046 . . . . . . 7 (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 Func 𝑌))
3231adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 Func 𝑌))
3330, 32eleqtrd 2830 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹 ∈ (𝑋 Func 𝑌))
34 1st2nd 7997 . . . . 5 ((Rel (𝑋 Func 𝑌) ∧ 𝐹 ∈ (𝑋 Func 𝑌)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
351, 33, 34sylancr 587 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
36 1st2ndbr 8000 . . . . . . 7 ((Rel (𝑋 Func 𝑌) ∧ 𝐹 ∈ (𝑋 Func 𝑌)) → (1st𝐹)(𝑋 Func 𝑌)(2nd𝐹))
371, 33, 36sylancr 587 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st𝐹)(𝑋 Func 𝑌)(2nd𝐹))
38 catciso.r . . . . . . . . 9 𝑅 = (Base‘𝑋)
39 eqid 2729 . . . . . . . . 9 (Hom ‘𝑋) = (Hom ‘𝑋)
40 eqid 2729 . . . . . . . . 9 (Hom ‘𝑌) = (Hom ‘𝑌)
4137adantr 480 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (1st𝐹)(𝑋 Func 𝑌)(2nd𝐹))
42 simprl 770 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
43 simprr 772 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
4438, 39, 40, 41, 42, 43funcf2 17811 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
45 catciso.s . . . . . . . . . 10 𝑆 = (Base‘𝑌)
46 relfunc 17805 . . . . . . . . . . . 12 Rel (𝑌 Func 𝑋)
4729simp2d 1143 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋))
485, 2, 4, 25, 9, 8catchom 18046 . . . . . . . . . . . . . 14 (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 Func 𝑋))
4948adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 Func 𝑋))
5047, 49eleqtrd 2830 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌 Func 𝑋))
51 1st2ndbr 8000 . . . . . . . . . . . 12 ((Rel (𝑌 Func 𝑋) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌 Func 𝑋)) → (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))(𝑌 Func 𝑋)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
5246, 50, 51sylancr 587 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))(𝑌 Func 𝑋)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
5352adantr 480 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))(𝑌 Func 𝑋)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
5438, 45, 41funcf1 17809 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (1st𝐹):𝑅𝑆)
5554, 42ffvelcdmd 7039 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st𝐹)‘𝑥) ∈ 𝑆)
5654, 43ffvelcdmd 7039 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st𝐹)‘𝑦) ∈ 𝑆)
5745, 40, 39, 53, 55, 56funcf2 17811 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))⟶(((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(Hom ‘𝑋)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))))
5829simp3d 1144 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
594adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝑈𝑉)
605, 2, 59, 26, 15, 16, 15, 33, 50catcco 18048 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = (((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))
61 eqid 2729 . . . . . . . . . . . . . . . . . 18 (idfunc𝑋) = (idfunc𝑋)
625, 2, 27, 61, 4, 8catcid 18050 . . . . . . . . . . . . . . . . 17 (𝜑 → ((Id‘𝐶)‘𝑋) = (idfunc𝑋))
6362adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((Id‘𝐶)‘𝑋) = (idfunc𝑋))
6458, 60, 633eqtr3d 2772 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹) = (idfunc𝑋))
6564adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹) = (idfunc𝑋))
6665fveq2d 6844 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹)) = (1st ‘(idfunc𝑋)))
6766fveq1d 6842 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))‘𝑥) = ((1st ‘(idfunc𝑋))‘𝑥))
6833adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝐹 ∈ (𝑋 Func 𝑌))
6950adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌 Func 𝑋))
7038, 68, 69, 42cofu1 17827 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))‘𝑥) = ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥)))
715, 2, 4catcbas 18044 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝑈 ∩ Cat))
72 inss2 4197 . . . . . . . . . . . . . . . 16 (𝑈 ∩ Cat) ⊆ Cat
7371, 72eqsstrdi 3988 . . . . . . . . . . . . . . 15 (𝜑𝐵 ⊆ Cat)
7473, 8sseldd 3944 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ Cat)
7574ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑋 ∈ Cat)
7661, 38, 75, 42idfu1 17823 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(idfunc𝑋))‘𝑥) = 𝑥)
7767, 70, 763eqtr3d 2772 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥)) = 𝑥)
7866fveq1d 6842 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))‘𝑦) = ((1st ‘(idfunc𝑋))‘𝑦))
7938, 68, 69, 43cofu1 17827 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))‘𝑦) = ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦)))
8061, 38, 75, 43idfu1 17823 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(idfunc𝑋))‘𝑦) = 𝑦)
8178, 79, 803eqtr3d 2772 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦)) = 𝑦)
8277, 81oveq12d 7387 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(Hom ‘𝑋)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))) = (𝑥(Hom ‘𝑋)𝑦))
8382feq3d 6655 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))⟶(((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(Hom ‘𝑋)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))) ↔ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))⟶(𝑥(Hom ‘𝑋)𝑦)))
8457, 83mpbid 232 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))⟶(𝑥(Hom ‘𝑋)𝑦))
8565fveq2d 6844 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (2nd ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹)) = (2nd ‘(idfunc𝑋)))
8685oveqd 7386 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))𝑦) = (𝑥(2nd ‘(idfunc𝑋))𝑦))
8738, 68, 69, 42, 43cofu2nd 17828 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))𝑦) = ((((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
8861, 38, 75, 39, 42, 43idfu2nd 17820 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd ‘(idfunc𝑋))𝑦) = ( I ↾ (𝑥(Hom ‘𝑋)𝑦)))
8986, 87, 883eqtr3d 2772 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) = ( I ↾ (𝑥(Hom ‘𝑋)𝑦)))
9023simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
912, 25, 26, 27, 21, 14, 16, 15issect 17696 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((Id‘𝐶)‘𝑌))))
9290, 91mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((Id‘𝐶)‘𝑌)))
9392simp3d 1144 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((Id‘𝐶)‘𝑌))
945, 2, 59, 26, 16, 15, 16, 50, 33catcco 18048 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = (𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
95 eqid 2729 . . . . . . . . . . . . . . 15 (idfunc𝑌) = (idfunc𝑌)
965, 2, 27, 95, 4, 9catcid 18050 . . . . . . . . . . . . . 14 (𝜑 → ((Id‘𝐶)‘𝑌) = (idfunc𝑌))
9796adantr 480 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((Id‘𝐶)‘𝑌) = (idfunc𝑌))
9893, 94, 973eqtr3d 2772 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = (idfunc𝑌))
9998adantr 480 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = (idfunc𝑌))
10099fveq2d 6844 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (2nd ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = (2nd ‘(idfunc𝑌)))
101100oveqd 7386 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)))((1st𝐹)‘𝑦)) = (((1st𝐹)‘𝑥)(2nd ‘(idfunc𝑌))((1st𝐹)‘𝑦)))
10245, 69, 68, 55, 56cofu2nd 17828 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)))((1st𝐹)‘𝑦)) = ((((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(2nd𝐹)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))) ∘ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦))))
10377, 81oveq12d 7387 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(2nd𝐹)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))) = (𝑥(2nd𝐹)𝑦))
104103coeq1d 5815 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(2nd𝐹)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))) ∘ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦))) = ((𝑥(2nd𝐹)𝑦) ∘ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦))))
105102, 104eqtrd 2764 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)))((1st𝐹)‘𝑦)) = ((𝑥(2nd𝐹)𝑦) ∘ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦))))
10673ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝐵 ⊆ Cat)
1079ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑌𝐵)
108106, 107sseldd 3944 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑌 ∈ Cat)
10995, 45, 108, 40, 55, 56idfu2nd 17820 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘(idfunc𝑌))((1st𝐹)‘𝑦)) = ( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))))
110101, 105, 1093eqtr3d 2772 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥(2nd𝐹)𝑦) ∘ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦))) = ( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))))
11144, 84, 89, 110fcof1od 7251 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
112111ralrimivva 3178 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ∀𝑥𝑅𝑦𝑅 (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
11338, 39, 40isffth2 17861 . . . . . 6 ((1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹) ↔ ((1st𝐹)(𝑋 Func 𝑌)(2nd𝐹) ∧ ∀𝑥𝑅𝑦𝑅 (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))))
11437, 112, 113sylanbrc 583 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹))
115 df-br 5103 . . . . 5 ((1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹) ↔ ⟨(1st𝐹), (2nd𝐹)⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
116114, 115sylib 218 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ⟨(1st𝐹), (2nd𝐹)⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
11735, 116eqeltrd 2828 . . 3 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
11838, 45, 37funcf1 17809 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st𝐹):𝑅𝑆)
11945, 38, 52funcf1 17809 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)):𝑆𝑅)
12064fveq2d 6844 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹)) = (1st ‘(idfunc𝑋)))
12138, 33, 50cofu1st 17826 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹)) = ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)) ∘ (1st𝐹)))
12274adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝑋 ∈ Cat)
12361, 38, 122idfu1st 17822 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(idfunc𝑋)) = ( I ↾ 𝑅))
124120, 121, 1233eqtr3d 2772 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)) ∘ (1st𝐹)) = ( I ↾ 𝑅))
12598fveq2d 6844 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = (1st ‘(idfunc𝑌)))
12645, 50, 33cofu1st 17826 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = ((1st𝐹) ∘ (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))))
12773, 9sseldd 3944 . . . . . . 7 (𝜑𝑌 ∈ Cat)
128127adantr 480 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝑌 ∈ Cat)
12995, 45, 128idfu1st 17822 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(idfunc𝑌)) = ( I ↾ 𝑆))
130125, 126, 1293eqtr3d 2772 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((1st𝐹) ∘ (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = ( I ↾ 𝑆))
131118, 119, 124, 130fcof1od 7251 . . 3 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st𝐹):𝑅1-1-onto𝑆)
132117, 131jca 511 . 2 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆))
1337adantr 480 . . 3 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐶 ∈ Cat)
1348adantr 480 . . 3 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝑋𝐵)
1359adantr 480 . . 3 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝑌𝐵)
136 inss1 4196 . . . . . . 7 ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Full 𝑌)
137 fullfunc 17851 . . . . . . 7 (𝑋 Full 𝑌) ⊆ (𝑋 Func 𝑌)
138136, 137sstri 3953 . . . . . 6 ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Func 𝑌)
139 simprl 770 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
140138, 139sselid 3941 . . . . 5 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐹 ∈ (𝑋 Func 𝑌))
1411, 140, 34sylancr 587 . . . 4 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
1424adantr 480 . . . . 5 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝑈𝑉)
143 eqid 2729 . . . . 5 (𝑥𝑆, 𝑦𝑆(((1st𝐹)‘𝑥)(2nd𝐹)((1st𝐹)‘𝑦))) = (𝑥𝑆, 𝑦𝑆(((1st𝐹)‘𝑥)(2nd𝐹)((1st𝐹)‘𝑦)))
144141, 139eqeltrrd 2829 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → ⟨(1st𝐹), (2nd𝐹)⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
145144, 115sylibr 234 . . . . 5 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → (1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹))
146 simprr 772 . . . . 5 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → (1st𝐹):𝑅1-1-onto𝑆)
1475, 2, 38, 45, 142, 134, 135, 3, 143, 145, 146catcisolem 18053 . . . 4 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → ⟨(1st𝐹), (2nd𝐹)⟩(𝑋(Inv‘𝐶)𝑌)⟨(1st𝐹), (𝑥𝑆, 𝑦𝑆(((1st𝐹)‘𝑥)(2nd𝐹)((1st𝐹)‘𝑦)))⟩)
148141, 147eqbrtrd 5124 . . 3 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐹(𝑋(Inv‘𝐶)𝑌)⟨(1st𝐹), (𝑥𝑆, 𝑦𝑆(((1st𝐹)‘𝑥)(2nd𝐹)((1st𝐹)‘𝑦)))⟩)
1492, 3, 133, 134, 135, 10, 148inviso1 17709 . 2 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐹 ∈ (𝑋𝐼𝑌))
150132, 149impbida 800 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cin 3910  wss 3911  cop 4591   class class class wbr 5102   I cid 5525  ccnv 5630  dom cdm 5631  cres 5633  ccom 5635  Rel wrel 5636  Fun wfun 6493  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  Basecbs 17156  Hom chom 17208  compcco 17209  Catccat 17606  Idccid 17607  Sectcsect 17687  Invcinv 17688  Isociso 17689   Func cfunc 17797  idfunccidfu 17798  func ccofu 17799   Full cful 17847   Faith cfth 17848  CatCatccatc 18041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-fz 13447  df-struct 17094  df-slot 17129  df-ndx 17141  df-base 17157  df-hom 17221  df-cco 17222  df-cat 17610  df-cid 17611  df-sect 17690  df-inv 17691  df-iso 17692  df-func 17801  df-idfu 17802  df-cofu 17803  df-full 17849  df-fth 17850  df-catc 18042
This theorem is referenced by:  yoniso  18227  swapfiso  49268  catcisoi  49383  fucoppc  49393  thincciso  49436  thincciso2  49438  termcterm2  49497  diagciso  49522
  Copyright terms: Public domain W3C validator