MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catciso Structured version   Visualization version   GIF version

Theorem catciso 17826
Description: A functor is an isomorphism of categories if and only if it is full and faithful, and is a bijection on the objects. Remark 3.28(2) in [Adamek] p. 34. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
catciso.c 𝐶 = (CatCat‘𝑈)
catciso.b 𝐵 = (Base‘𝐶)
catciso.r 𝑅 = (Base‘𝑋)
catciso.s 𝑆 = (Base‘𝑌)
catciso.u (𝜑𝑈𝑉)
catciso.x (𝜑𝑋𝐵)
catciso.y (𝜑𝑌𝐵)
catciso.i 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
catciso (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)))

Proof of Theorem catciso
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17577 . . . . 5 Rel (𝑋 Func 𝑌)
2 catciso.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐶)
3 eqid 2738 . . . . . . . . . . . . . 14 (Inv‘𝐶) = (Inv‘𝐶)
4 catciso.u . . . . . . . . . . . . . . 15 (𝜑𝑈𝑉)
5 catciso.c . . . . . . . . . . . . . . . 16 𝐶 = (CatCat‘𝑈)
65catccat 17823 . . . . . . . . . . . . . . 15 (𝑈𝑉𝐶 ∈ Cat)
74, 6syl 17 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ Cat)
8 catciso.x . . . . . . . . . . . . . 14 (𝜑𝑋𝐵)
9 catciso.y . . . . . . . . . . . . . 14 (𝜑𝑌𝐵)
10 catciso.i . . . . . . . . . . . . . 14 𝐼 = (Iso‘𝐶)
112, 3, 7, 8, 9, 10isoval 17477 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
1211eleq2d 2824 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
1312biimpa 477 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))
147adantr 481 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐶 ∈ Cat)
158adantr 481 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝑋𝐵)
169adantr 481 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝑌𝐵)
172, 3, 14, 15, 16invfun 17476 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → Fun (𝑋(Inv‘𝐶)𝑌))
18 funfvbrb 6928 . . . . . . . . . . . 12 (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
1917, 18syl 17 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
2013, 19mpbid 231 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))
21 eqid 2738 . . . . . . . . . . 11 (Sect‘𝐶) = (Sect‘𝐶)
222, 3, 14, 15, 16, 21isinv 17472 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)))
2320, 22mpbid 231 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹))
2423simpld 495 . . . . . . . 8 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))
25 eqid 2738 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
26 eqid 2738 . . . . . . . . 9 (comp‘𝐶) = (comp‘𝐶)
27 eqid 2738 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
282, 25, 26, 27, 21, 14, 15, 16issect 17465 . . . . . . . 8 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
2924, 28mpbid 231 . . . . . . 7 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
3029simp1d 1141 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
315, 2, 4, 25, 8, 9catchom 17818 . . . . . . 7 (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 Func 𝑌))
3231adantr 481 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 Func 𝑌))
3330, 32eleqtrd 2841 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹 ∈ (𝑋 Func 𝑌))
34 1st2nd 7880 . . . . 5 ((Rel (𝑋 Func 𝑌) ∧ 𝐹 ∈ (𝑋 Func 𝑌)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
351, 33, 34sylancr 587 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
36 1st2ndbr 7883 . . . . . . 7 ((Rel (𝑋 Func 𝑌) ∧ 𝐹 ∈ (𝑋 Func 𝑌)) → (1st𝐹)(𝑋 Func 𝑌)(2nd𝐹))
371, 33, 36sylancr 587 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st𝐹)(𝑋 Func 𝑌)(2nd𝐹))
38 catciso.r . . . . . . . . 9 𝑅 = (Base‘𝑋)
39 eqid 2738 . . . . . . . . 9 (Hom ‘𝑋) = (Hom ‘𝑋)
40 eqid 2738 . . . . . . . . 9 (Hom ‘𝑌) = (Hom ‘𝑌)
4137adantr 481 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (1st𝐹)(𝑋 Func 𝑌)(2nd𝐹))
42 simprl 768 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑥𝑅)
43 simprr 770 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑦𝑅)
4438, 39, 40, 41, 42, 43funcf2 17583 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
45 catciso.s . . . . . . . . . 10 𝑆 = (Base‘𝑌)
46 relfunc 17577 . . . . . . . . . . . 12 Rel (𝑌 Func 𝑋)
4729simp2d 1142 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋))
485, 2, 4, 25, 9, 8catchom 17818 . . . . . . . . . . . . . 14 (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 Func 𝑋))
4948adantr 481 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 Func 𝑋))
5047, 49eleqtrd 2841 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌 Func 𝑋))
51 1st2ndbr 7883 . . . . . . . . . . . 12 ((Rel (𝑌 Func 𝑋) ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌 Func 𝑋)) → (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))(𝑌 Func 𝑋)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
5246, 50, 51sylancr 587 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))(𝑌 Func 𝑋)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
5352adantr 481 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))(𝑌 Func 𝑋)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
5438, 45, 41funcf1 17581 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (1st𝐹):𝑅𝑆)
5554, 42ffvelrnd 6962 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st𝐹)‘𝑥) ∈ 𝑆)
5654, 43ffvelrnd 6962 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st𝐹)‘𝑦) ∈ 𝑆)
5745, 40, 39, 53, 55, 56funcf2 17583 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))⟶(((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(Hom ‘𝑋)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))))
5829simp3d 1143 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))
594adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝑈𝑉)
605, 2, 59, 26, 15, 16, 15, 33, 50catcco 17820 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = (((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))
61 eqid 2738 . . . . . . . . . . . . . . . . . 18 (idfunc𝑋) = (idfunc𝑋)
625, 2, 27, 61, 4, 8catcid 17822 . . . . . . . . . . . . . . . . 17 (𝜑 → ((Id‘𝐶)‘𝑋) = (idfunc𝑋))
6362adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((Id‘𝐶)‘𝑋) = (idfunc𝑋))
6458, 60, 633eqtr3d 2786 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹) = (idfunc𝑋))
6564adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹) = (idfunc𝑋))
6665fveq2d 6778 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹)) = (1st ‘(idfunc𝑋)))
6766fveq1d 6776 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))‘𝑥) = ((1st ‘(idfunc𝑋))‘𝑥))
6833adantr 481 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝐹 ∈ (𝑋 Func 𝑌))
6950adantr 481 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌 Func 𝑋))
7038, 68, 69, 42cofu1 17599 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))‘𝑥) = ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥)))
715, 2, 4catcbas 17816 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝑈 ∩ Cat))
72 inss2 4163 . . . . . . . . . . . . . . . 16 (𝑈 ∩ Cat) ⊆ Cat
7371, 72eqsstrdi 3975 . . . . . . . . . . . . . . 15 (𝜑𝐵 ⊆ Cat)
7473, 8sseldd 3922 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ Cat)
7574ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑋 ∈ Cat)
7661, 38, 75, 42idfu1 17595 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(idfunc𝑋))‘𝑥) = 𝑥)
7767, 70, 763eqtr3d 2786 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥)) = 𝑥)
7866fveq1d 6776 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))‘𝑦) = ((1st ‘(idfunc𝑋))‘𝑦))
7938, 68, 69, 43cofu1 17599 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))‘𝑦) = ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦)))
8061, 38, 75, 43idfu1 17595 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘(idfunc𝑋))‘𝑦) = 𝑦)
8178, 79, 803eqtr3d 2786 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦)) = 𝑦)
8277, 81oveq12d 7293 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(Hom ‘𝑋)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))) = (𝑥(Hom ‘𝑋)𝑦))
8382feq3d 6587 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))⟶(((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(Hom ‘𝑋)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))) ↔ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))⟶(𝑥(Hom ‘𝑋)𝑦)))
8457, 83mpbid 231 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))⟶(𝑥(Hom ‘𝑋)𝑦))
8565fveq2d 6778 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (2nd ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹)) = (2nd ‘(idfunc𝑋)))
8685oveqd 7292 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))𝑦) = (𝑥(2nd ‘(idfunc𝑋))𝑦))
8738, 68, 69, 42, 43cofu2nd 17600 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹))𝑦) = ((((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
8861, 38, 75, 39, 42, 43idfu2nd 17592 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd ‘(idfunc𝑋))𝑦) = ( I ↾ (𝑥(Hom ‘𝑋)𝑦)))
8986, 87, 883eqtr3d 2786 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)) = ( I ↾ (𝑥(Hom ‘𝑋)𝑦)))
9023simprd 496 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((𝑋(Inv‘𝐶)𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
912, 25, 26, 27, 21, 14, 16, 15issect 17465 . . . . . . . . . . . . . . 15 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹 ↔ (((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((Id‘𝐶)‘𝑌))))
9290, 91mpbid 231 . . . . . . . . . . . . . 14 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((Id‘𝐶)‘𝑌)))
9392simp3d 1143 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = ((Id‘𝐶)‘𝑌))
945, 2, 59, 26, 16, 15, 16, 50, 33catcco 17820 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = (𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
95 eqid 2738 . . . . . . . . . . . . . . 15 (idfunc𝑌) = (idfunc𝑌)
965, 2, 27, 95, 4, 9catcid 17822 . . . . . . . . . . . . . 14 (𝜑 → ((Id‘𝐶)‘𝑌) = (idfunc𝑌))
9796adantr 481 . . . . . . . . . . . . 13 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((Id‘𝐶)‘𝑌) = (idfunc𝑌))
9893, 94, 973eqtr3d 2786 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = (idfunc𝑌))
9998adantr 481 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)) = (idfunc𝑌))
10099fveq2d 6778 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (2nd ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = (2nd ‘(idfunc𝑌)))
101100oveqd 7292 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)))((1st𝐹)‘𝑦)) = (((1st𝐹)‘𝑥)(2nd ‘(idfunc𝑌))((1st𝐹)‘𝑦)))
10245, 69, 68, 55, 56cofu2nd 17600 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)))((1st𝐹)‘𝑦)) = ((((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(2nd𝐹)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))) ∘ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦))))
10377, 81oveq12d 7293 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(2nd𝐹)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))) = (𝑥(2nd𝐹)𝑦))
104103coeq1d 5770 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑥))(2nd𝐹)((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))‘((1st𝐹)‘𝑦))) ∘ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦))) = ((𝑥(2nd𝐹)𝑦) ∘ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦))))
105102, 104eqtrd 2778 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹)))((1st𝐹)‘𝑦)) = ((𝑥(2nd𝐹)𝑦) ∘ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦))))
10673ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝐵 ⊆ Cat)
1079ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑌𝐵)
108106, 107sseldd 3922 . . . . . . . . . 10 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → 𝑌 ∈ Cat)
10995, 45, 108, 40, 55, 56idfu2nd 17592 . . . . . . . . 9 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (((1st𝐹)‘𝑥)(2nd ‘(idfunc𝑌))((1st𝐹)‘𝑦)) = ( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))))
110101, 105, 1093eqtr3d 2786 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥(2nd𝐹)𝑦) ∘ (((1st𝐹)‘𝑥)(2nd ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))((1st𝐹)‘𝑦))) = ( I ↾ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))))
11144, 84, 89, 110fcof1od 7166 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝐼𝑌)) ∧ (𝑥𝑅𝑦𝑅)) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
112111ralrimivva 3123 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ∀𝑥𝑅𝑦𝑅 (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
11338, 39, 40isffth2 17632 . . . . . 6 ((1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹) ↔ ((1st𝐹)(𝑋 Func 𝑌)(2nd𝐹) ∧ ∀𝑥𝑅𝑦𝑅 (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))))
11437, 112, 113sylanbrc 583 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹))
115 df-br 5075 . . . . 5 ((1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹) ↔ ⟨(1st𝐹), (2nd𝐹)⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
116114, 115sylib 217 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ⟨(1st𝐹), (2nd𝐹)⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
11735, 116eqeltrd 2839 . . 3 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
11838, 45, 37funcf1 17581 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st𝐹):𝑅𝑆)
11945, 38, 52funcf1 17581 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)):𝑆𝑅)
12064fveq2d 6778 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹)) = (1st ‘(idfunc𝑋)))
12138, 33, 50cofu1st 17598 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(((𝑋(Inv‘𝐶)𝑌)‘𝐹) ∘func 𝐹)) = ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)) ∘ (1st𝐹)))
12274adantr 481 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝑋 ∈ Cat)
12361, 38, 122idfu1st 17594 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(idfunc𝑋)) = ( I ↾ 𝑅))
124120, 121, 1233eqtr3d 2786 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹)) ∘ (1st𝐹)) = ( I ↾ 𝑅))
12598fveq2d 6778 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = (1st ‘(idfunc𝑌)))
12645, 50, 33cofu1st 17598 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(𝐹func ((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = ((1st𝐹) ∘ (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))))
12773, 9sseldd 3922 . . . . . . 7 (𝜑𝑌 ∈ Cat)
128127adantr 481 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → 𝑌 ∈ Cat)
12995, 45, 128idfu1st 17594 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st ‘(idfunc𝑌)) = ( I ↾ 𝑆))
130125, 126, 1293eqtr3d 2786 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → ((1st𝐹) ∘ (1st ‘((𝑋(Inv‘𝐶)𝑌)‘𝐹))) = ( I ↾ 𝑆))
131118, 119, 124, 130fcof1od 7166 . . 3 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (1st𝐹):𝑅1-1-onto𝑆)
132117, 131jca 512 . 2 ((𝜑𝐹 ∈ (𝑋𝐼𝑌)) → (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆))
1337adantr 481 . . 3 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐶 ∈ Cat)
1348adantr 481 . . 3 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝑋𝐵)
1359adantr 481 . . 3 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝑌𝐵)
136 inss1 4162 . . . . . . 7 ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Full 𝑌)
137 fullfunc 17622 . . . . . . 7 (𝑋 Full 𝑌) ⊆ (𝑋 Func 𝑌)
138136, 137sstri 3930 . . . . . 6 ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ⊆ (𝑋 Func 𝑌)
139 simprl 768 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
140138, 139sselid 3919 . . . . 5 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐹 ∈ (𝑋 Func 𝑌))
1411, 140, 34sylancr 587 . . . 4 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
1424adantr 481 . . . . 5 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝑈𝑉)
143 eqid 2738 . . . . 5 (𝑥𝑆, 𝑦𝑆(((1st𝐹)‘𝑥)(2nd𝐹)((1st𝐹)‘𝑦))) = (𝑥𝑆, 𝑦𝑆(((1st𝐹)‘𝑥)(2nd𝐹)((1st𝐹)‘𝑦)))
144141, 139eqeltrrd 2840 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → ⟨(1st𝐹), (2nd𝐹)⟩ ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
145144, 115sylibr 233 . . . . 5 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → (1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹))
146 simprr 770 . . . . 5 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → (1st𝐹):𝑅1-1-onto𝑆)
1475, 2, 38, 45, 142, 134, 135, 3, 143, 145, 146catcisolem 17825 . . . 4 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → ⟨(1st𝐹), (2nd𝐹)⟩(𝑋(Inv‘𝐶)𝑌)⟨(1st𝐹), (𝑥𝑆, 𝑦𝑆(((1st𝐹)‘𝑥)(2nd𝐹)((1st𝐹)‘𝑦)))⟩)
148141, 147eqbrtrd 5096 . . 3 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐹(𝑋(Inv‘𝐶)𝑌)⟨(1st𝐹), (𝑥𝑆, 𝑦𝑆(((1st𝐹)‘𝑥)(2nd𝐹)((1st𝐹)‘𝑦)))⟩)
1492, 3, 133, 134, 135, 10, 148inviso1 17478 . 2 ((𝜑 ∧ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)) → 𝐹 ∈ (𝑋𝐼𝑌))
150132, 149impbida 798 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):𝑅1-1-onto𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cin 3886  wss 3887  cop 4567   class class class wbr 5074   I cid 5488  ccnv 5588  dom cdm 5589  cres 5591  ccom 5593  Rel wrel 5594  Fun wfun 6427  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  Basecbs 16912  Hom chom 16973  compcco 16974  Catccat 17373  Idccid 17374  Sectcsect 17456  Invcinv 17457  Isociso 17458   Func cfunc 17569  idfunccidfu 17570  func ccofu 17571   Full cful 17618   Faith cfth 17619  CatCatccatc 17813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-hom 16986  df-cco 16987  df-cat 17377  df-cid 17378  df-sect 17459  df-inv 17460  df-iso 17461  df-func 17573  df-idfu 17574  df-cofu 17575  df-full 17620  df-fth 17621  df-catc 17814
This theorem is referenced by:  yoniso  18003  thincciso  46330
  Copyright terms: Public domain W3C validator