![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapss | Structured version Visualization version GIF version |
Description: Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
mapss | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8907 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝑓:𝐶⟶𝐴) | |
2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝑓:𝐶⟶𝐴) |
3 | simplr 768 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝐴 ⊆ 𝐵) | |
4 | 2, 3 | fssd 6764 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝑓:𝐶⟶𝐵) |
5 | simpll 766 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝐵 ∈ 𝑉) | |
6 | elmapex 8906 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V)) | |
7 | 6 | simprd 495 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝐶 ∈ V) |
8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝐶 ∈ V) |
9 | 5, 8 | elmapd 8898 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → (𝑓 ∈ (𝐵 ↑m 𝐶) ↔ 𝑓:𝐶⟶𝐵)) |
10 | 4, 9 | mpbird 257 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝑓 ∈ (𝐵 ↑m 𝐶)) |
11 | 10 | ex 412 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝑓 ∈ (𝐵 ↑m 𝐶))) |
12 | 11 | ssrdv 4014 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ⟶wf 6569 (class class class)co 7448 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 |
This theorem is referenced by: mapdom1 9208 ssfin3ds 10399 ingru 10884 resspsrbas 22017 resspsradd 22018 resspsrmul 22019 plyss 26258 eulerpartlem1 34332 eulerpartlemn 34346 reprss 34594 poimirlem29 37609 poimirlem30 37610 poimirlem31 37611 poimirlem32 37612 poimir 37613 broucube 37614 diophrw 42715 diophin 42728 diophun 42729 eq0rabdioph 42732 eqrabdioph 42733 rabdiophlem1 42757 diophren 42769 k0004ss1 44113 ixpssmapc 44975 mapss2 45112 difmap 45114 inmap 45116 mapssbi 45120 iunmapss 45122 dvnprodlem2 45868 etransclem24 46179 etransclem25 46180 etransclem26 46181 etransclem28 46183 etransclem35 46190 etransclem37 46192 qndenserrnbllem 46215 qndenserrn 46220 hoissrrn 46470 hoissrrn2 46499 hspmbl 46550 opnvonmbllem2 46554 ovolval2lem 46564 ovolval2 46565 ovolval3 46568 ovolval4lem2 46571 ovnovollem3 46579 vonvolmbl 46582 smfmullem4 46715 |
Copyright terms: Public domain | W3C validator |