Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapss Structured version   Visualization version   GIF version

Theorem mapss 8471
 Description: Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
mapss ((𝐵𝑉𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))

Proof of Theorem mapss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8438 . . . . . 6 (𝑓 ∈ (𝐴m 𝐶) → 𝑓:𝐶𝐴)
21adantl 485 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝑓:𝐶𝐴)
3 simplr 768 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝐴𝐵)
42, 3fssd 6513 . . . 4 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝑓:𝐶𝐵)
5 simpll 766 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝐵𝑉)
6 elmapex 8437 . . . . . . 7 (𝑓 ∈ (𝐴m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
76simprd 499 . . . . . 6 (𝑓 ∈ (𝐴m 𝐶) → 𝐶 ∈ V)
87adantl 485 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝐶 ∈ V)
95, 8elmapd 8430 . . . 4 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → (𝑓 ∈ (𝐵m 𝐶) ↔ 𝑓:𝐶𝐵))
104, 9mpbird 260 . . 3 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝑓 ∈ (𝐵m 𝐶))
1110ex 416 . 2 ((𝐵𝑉𝐴𝐵) → (𝑓 ∈ (𝐴m 𝐶) → 𝑓 ∈ (𝐵m 𝐶)))
1211ssrdv 3898 1 ((𝐵𝑉𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∈ wcel 2111  Vcvv 3409   ⊆ wss 3858  ⟶wf 6331  (class class class)co 7150   ↑m cmap 8416 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-map 8418 This theorem is referenced by:  mapdom1  8704  ssfin3ds  9790  ingru  10275  resspsrbas  20743  resspsradd  20744  resspsrmul  20745  plyss  24895  eulerpartlem1  31853  eulerpartlemn  31867  reprss  32116  poimirlem29  35366  poimirlem30  35367  poimirlem31  35368  poimirlem32  35369  poimir  35370  broucube  35371  diophrw  40073  diophin  40086  diophun  40087  eq0rabdioph  40090  eqrabdioph  40091  rabdiophlem1  40115  diophren  40127  k0004ss1  41227  ixpssmapc  42081  mapss2  42204  difmap  42206  inmap  42208  mapssbi  42212  iunmapss  42214  dvnprodlem2  42955  etransclem24  43266  etransclem25  43267  etransclem26  43268  etransclem28  43270  etransclem35  43277  etransclem37  43279  qndenserrnbllem  43302  qndenserrn  43307  hoissrrn  43554  hoissrrn2  43583  hspmbl  43634  opnvonmbllem2  43638  ovolval2lem  43648  ovolval2  43649  ovolval3  43652  ovolval4lem2  43655  ovnovollem3  43663  vonvolmbl  43666  smfmullem4  43792
 Copyright terms: Public domain W3C validator