| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapss | Structured version Visualization version GIF version | ||
| Description: Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| mapss | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8825 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝑓:𝐶⟶𝐴) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝑓:𝐶⟶𝐴) |
| 3 | simplr 768 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝐴 ⊆ 𝐵) | |
| 4 | 2, 3 | fssd 6708 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝑓:𝐶⟶𝐵) |
| 5 | simpll 766 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝐵 ∈ 𝑉) | |
| 6 | elmapex 8824 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V)) | |
| 7 | 6 | simprd 495 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝐶 ∈ V) |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝐶 ∈ V) |
| 9 | 5, 8 | elmapd 8816 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → (𝑓 ∈ (𝐵 ↑m 𝐶) ↔ 𝑓:𝐶⟶𝐵)) |
| 10 | 4, 9 | mpbird 257 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝑓 ∈ (𝐵 ↑m 𝐶)) |
| 11 | 10 | ex 412 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝑓 ∈ (𝐵 ↑m 𝐶))) |
| 12 | 11 | ssrdv 3955 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ⟶wf 6510 (class class class)co 7390 ↑m cmap 8802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 |
| This theorem is referenced by: mapdom1 9112 ssfin3ds 10290 ingru 10775 resspsrbas 21890 resspsradd 21891 resspsrmul 21892 plyss 26111 eulerpartlem1 34365 eulerpartlemn 34379 reprss 34615 poimirlem29 37650 poimirlem30 37651 poimirlem31 37652 poimirlem32 37653 poimir 37654 broucube 37655 diophrw 42754 diophin 42767 diophun 42768 eq0rabdioph 42771 eqrabdioph 42772 rabdiophlem1 42796 diophren 42808 k0004ss1 44147 ixpssmapc 45074 mapss2 45206 difmap 45208 inmap 45210 mapssbi 45214 iunmapss 45216 dvnprodlem2 45952 etransclem24 46263 etransclem25 46264 etransclem26 46265 etransclem28 46267 etransclem35 46274 etransclem37 46276 qndenserrnbllem 46299 qndenserrn 46304 hoissrrn 46554 hoissrrn2 46583 hspmbl 46634 opnvonmbllem2 46638 ovolval2lem 46648 ovolval2 46649 ovolval3 46652 ovolval4lem2 46655 ovnovollem3 46663 vonvolmbl 46666 smfmullem4 46799 |
| Copyright terms: Public domain | W3C validator |