| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapss | Structured version Visualization version GIF version | ||
| Description: Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| mapss | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8779 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝑓:𝐶⟶𝐴) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝑓:𝐶⟶𝐴) |
| 3 | simplr 768 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝐴 ⊆ 𝐵) | |
| 4 | 2, 3 | fssd 6673 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝑓:𝐶⟶𝐵) |
| 5 | simpll 766 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝐵 ∈ 𝑉) | |
| 6 | elmapex 8778 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V)) | |
| 7 | 6 | simprd 495 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝐶 ∈ V) |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝐶 ∈ V) |
| 9 | 5, 8 | elmapd 8770 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → (𝑓 ∈ (𝐵 ↑m 𝐶) ↔ 𝑓:𝐶⟶𝐵)) |
| 10 | 4, 9 | mpbird 257 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝑓 ∈ (𝐵 ↑m 𝐶)) |
| 11 | 10 | ex 412 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝑓 ∈ (𝐵 ↑m 𝐶))) |
| 12 | 11 | ssrdv 3936 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ⟶wf 6482 (class class class)co 7352 ↑m cmap 8756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 |
| This theorem is referenced by: mapdom1 9062 ssfin3ds 10228 ingru 10713 resspsrbas 21912 resspsradd 21913 resspsrmul 21914 plyss 26132 eulerpartlem1 34401 eulerpartlemn 34415 reprss 34651 poimirlem29 37709 poimirlem30 37710 poimirlem31 37711 poimirlem32 37712 poimir 37713 broucube 37714 diophrw 42876 diophin 42889 diophun 42890 eq0rabdioph 42893 eqrabdioph 42894 rabdiophlem1 42918 diophren 42930 k0004ss1 44268 ixpssmapc 45194 mapss2 45326 difmap 45328 inmap 45330 mapssbi 45334 iunmapss 45336 dvnprodlem2 46069 etransclem24 46380 etransclem25 46381 etransclem26 46382 etransclem28 46384 etransclem35 46391 etransclem37 46393 qndenserrnbllem 46416 qndenserrn 46421 hoissrrn 46671 hoissrrn2 46700 hspmbl 46751 opnvonmbllem2 46755 ovolval2lem 46765 ovolval2 46766 ovolval3 46769 ovolval4lem2 46772 ovnovollem3 46780 vonvolmbl 46783 smfmullem4 46916 |
| Copyright terms: Public domain | W3C validator |