![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapss | Structured version Visualization version GIF version |
Description: Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
mapss | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑𝑚 𝐶) ⊆ (𝐵 ↑𝑚 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8117 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐶) → 𝑓:𝐶⟶𝐴) | |
2 | 1 | adantl 474 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝑓:𝐶⟶𝐴) |
3 | simplr 786 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝐴 ⊆ 𝐵) | |
4 | 2, 3 | fssd 6270 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝑓:𝐶⟶𝐵) |
5 | simpll 784 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝐵 ∈ 𝑉) | |
6 | elmapex 8116 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V)) | |
7 | 6 | simprd 490 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐶) → 𝐶 ∈ V) |
8 | 7 | adantl 474 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝐶 ∈ V) |
9 | 5, 8 | elmapd 8109 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → (𝑓 ∈ (𝐵 ↑𝑚 𝐶) ↔ 𝑓:𝐶⟶𝐵)) |
10 | 4, 9 | mpbird 249 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝑓 ∈ (𝐵 ↑𝑚 𝐶)) |
11 | 10 | ex 402 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑓 ∈ (𝐴 ↑𝑚 𝐶) → 𝑓 ∈ (𝐵 ↑𝑚 𝐶))) |
12 | 11 | ssrdv 3804 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑𝑚 𝐶) ⊆ (𝐵 ↑𝑚 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 Vcvv 3385 ⊆ wss 3769 ⟶wf 6097 (class class class)co 6878 ↑𝑚 cmap 8095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-map 8097 |
This theorem is referenced by: mapdom1 8367 ssfin3ds 9440 ingru 9925 resspsrbas 19738 resspsradd 19739 resspsrmul 19740 plyss 24296 eulerpartlem1 30945 eulerpartlemn 30959 reprss 31215 poimirlem29 33927 poimirlem30 33928 poimirlem31 33929 poimirlem32 33930 poimir 33931 broucube 33932 diophrw 38108 diophin 38122 diophun 38123 eq0rabdioph 38126 eqrabdioph 38127 rabdiophlem1 38151 diophren 38163 k0004ss1 39231 ixpssmapc 40002 mapss2 40149 difmap 40151 inmap 40153 mapssbi 40157 iunmapss 40159 dvnprodlem2 40906 etransclem24 41218 etransclem25 41219 etransclem26 41220 etransclem28 41222 etransclem35 41229 etransclem37 41231 qndenserrnbllem 41257 qndenserrn 41262 hoissrrn 41509 hoissrrn2 41538 hspmbl 41589 opnvonmbllem2 41593 ovolval2lem 41603 ovolval2 41604 ovolval3 41607 ovolval4lem2 41610 ovnovollem3 41618 vonvolmbl 41621 smfmullem4 41747 |
Copyright terms: Public domain | W3C validator |