MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapss Structured version   Visualization version   GIF version

Theorem mapss 8929
Description: Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
mapss ((𝐵𝑉𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))

Proof of Theorem mapss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8889 . . . . . 6 (𝑓 ∈ (𝐴m 𝐶) → 𝑓:𝐶𝐴)
21adantl 481 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝑓:𝐶𝐴)
3 simplr 769 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝐴𝐵)
42, 3fssd 6753 . . . 4 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝑓:𝐶𝐵)
5 simpll 767 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝐵𝑉)
6 elmapex 8888 . . . . . . 7 (𝑓 ∈ (𝐴m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
76simprd 495 . . . . . 6 (𝑓 ∈ (𝐴m 𝐶) → 𝐶 ∈ V)
87adantl 481 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝐶 ∈ V)
95, 8elmapd 8880 . . . 4 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → (𝑓 ∈ (𝐵m 𝐶) ↔ 𝑓:𝐶𝐵))
104, 9mpbird 257 . . 3 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝑓 ∈ (𝐵m 𝐶))
1110ex 412 . 2 ((𝐵𝑉𝐴𝐵) → (𝑓 ∈ (𝐴m 𝐶) → 𝑓 ∈ (𝐵m 𝐶)))
1211ssrdv 3989 1 ((𝐵𝑉𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3480  wss 3951  wf 6557  (class class class)co 7431  m cmap 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868
This theorem is referenced by:  mapdom1  9182  ssfin3ds  10370  ingru  10855  resspsrbas  21994  resspsradd  21995  resspsrmul  21996  plyss  26238  eulerpartlem1  34369  eulerpartlemn  34383  reprss  34632  poimirlem29  37656  poimirlem30  37657  poimirlem31  37658  poimirlem32  37659  poimir  37660  broucube  37661  diophrw  42770  diophin  42783  diophun  42784  eq0rabdioph  42787  eqrabdioph  42788  rabdiophlem1  42812  diophren  42824  k0004ss1  44164  ixpssmapc  45078  mapss2  45210  difmap  45212  inmap  45214  mapssbi  45218  iunmapss  45220  dvnprodlem2  45962  etransclem24  46273  etransclem25  46274  etransclem26  46275  etransclem28  46277  etransclem35  46284  etransclem37  46286  qndenserrnbllem  46309  qndenserrn  46314  hoissrrn  46564  hoissrrn2  46593  hspmbl  46644  opnvonmbllem2  46648  ovolval2lem  46658  ovolval2  46659  ovolval3  46662  ovolval4lem2  46665  ovnovollem3  46673  vonvolmbl  46676  smfmullem4  46809
  Copyright terms: Public domain W3C validator