| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapss | Structured version Visualization version GIF version | ||
| Description: Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| mapss | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8783 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝑓:𝐶⟶𝐴) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝑓:𝐶⟶𝐴) |
| 3 | simplr 768 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝐴 ⊆ 𝐵) | |
| 4 | 2, 3 | fssd 6673 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝑓:𝐶⟶𝐵) |
| 5 | simpll 766 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝐵 ∈ 𝑉) | |
| 6 | elmapex 8782 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V)) | |
| 7 | 6 | simprd 495 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝐶 ∈ V) |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝐶 ∈ V) |
| 9 | 5, 8 | elmapd 8774 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → (𝑓 ∈ (𝐵 ↑m 𝐶) ↔ 𝑓:𝐶⟶𝐵)) |
| 10 | 4, 9 | mpbird 257 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝑓 ∈ (𝐵 ↑m 𝐶)) |
| 11 | 10 | ex 412 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝑓 ∈ (𝐵 ↑m 𝐶))) |
| 12 | 11 | ssrdv 3943 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 ⟶wf 6482 (class class class)co 7353 ↑m cmap 8760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 |
| This theorem is referenced by: mapdom1 9066 ssfin3ds 10243 ingru 10728 resspsrbas 21899 resspsradd 21900 resspsrmul 21901 plyss 26120 eulerpartlem1 34334 eulerpartlemn 34348 reprss 34584 poimirlem29 37628 poimirlem30 37629 poimirlem31 37630 poimirlem32 37631 poimir 37632 broucube 37633 diophrw 42732 diophin 42745 diophun 42746 eq0rabdioph 42749 eqrabdioph 42750 rabdiophlem1 42774 diophren 42786 k0004ss1 44124 ixpssmapc 45051 mapss2 45183 difmap 45185 inmap 45187 mapssbi 45191 iunmapss 45193 dvnprodlem2 45929 etransclem24 46240 etransclem25 46241 etransclem26 46242 etransclem28 46244 etransclem35 46251 etransclem37 46253 qndenserrnbllem 46276 qndenserrn 46281 hoissrrn 46531 hoissrrn2 46560 hspmbl 46611 opnvonmbllem2 46615 ovolval2lem 46625 ovolval2 46626 ovolval3 46629 ovolval4lem2 46632 ovnovollem3 46640 vonvolmbl 46643 smfmullem4 46776 |
| Copyright terms: Public domain | W3C validator |