MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapss Structured version   Visualization version   GIF version

Theorem mapss 8635
Description: Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
mapss ((𝐵𝑉𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))

Proof of Theorem mapss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8595 . . . . . 6 (𝑓 ∈ (𝐴m 𝐶) → 𝑓:𝐶𝐴)
21adantl 481 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝑓:𝐶𝐴)
3 simplr 765 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝐴𝐵)
42, 3fssd 6602 . . . 4 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝑓:𝐶𝐵)
5 simpll 763 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝐵𝑉)
6 elmapex 8594 . . . . . . 7 (𝑓 ∈ (𝐴m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
76simprd 495 . . . . . 6 (𝑓 ∈ (𝐴m 𝐶) → 𝐶 ∈ V)
87adantl 481 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝐶 ∈ V)
95, 8elmapd 8587 . . . 4 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → (𝑓 ∈ (𝐵m 𝐶) ↔ 𝑓:𝐶𝐵))
104, 9mpbird 256 . . 3 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴m 𝐶)) → 𝑓 ∈ (𝐵m 𝐶))
1110ex 412 . 2 ((𝐵𝑉𝐴𝐵) → (𝑓 ∈ (𝐴m 𝐶) → 𝑓 ∈ (𝐵m 𝐶)))
1211ssrdv 3923 1 ((𝐵𝑉𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3422  wss 3883  wf 6414  (class class class)co 7255  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575
This theorem is referenced by:  mapdom1  8878  ssfin3ds  10017  ingru  10502  resspsrbas  21094  resspsradd  21095  resspsrmul  21096  plyss  25265  eulerpartlem1  32234  eulerpartlemn  32248  reprss  32497  poimirlem29  35733  poimirlem30  35734  poimirlem31  35735  poimirlem32  35736  poimir  35737  broucube  35738  diophrw  40497  diophin  40510  diophun  40511  eq0rabdioph  40514  eqrabdioph  40515  rabdiophlem1  40539  diophren  40551  k0004ss1  41650  ixpssmapc  42511  mapss2  42634  difmap  42636  inmap  42638  mapssbi  42642  iunmapss  42644  dvnprodlem2  43378  etransclem24  43689  etransclem25  43690  etransclem26  43691  etransclem28  43693  etransclem35  43700  etransclem37  43702  qndenserrnbllem  43725  qndenserrn  43730  hoissrrn  43977  hoissrrn2  44006  hspmbl  44057  opnvonmbllem2  44061  ovolval2lem  44071  ovolval2  44072  ovolval3  44075  ovolval4lem2  44078  ovnovollem3  44086  vonvolmbl  44089  smfmullem4  44215
  Copyright terms: Public domain W3C validator