| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapss | Structured version Visualization version GIF version | ||
| Description: Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| mapss | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8863 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝑓:𝐶⟶𝐴) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝑓:𝐶⟶𝐴) |
| 3 | simplr 768 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝐴 ⊆ 𝐵) | |
| 4 | 2, 3 | fssd 6723 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝑓:𝐶⟶𝐵) |
| 5 | simpll 766 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝐵 ∈ 𝑉) | |
| 6 | elmapex 8862 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V)) | |
| 7 | 6 | simprd 495 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝐶 ∈ V) |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝐶 ∈ V) |
| 9 | 5, 8 | elmapd 8854 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → (𝑓 ∈ (𝐵 ↑m 𝐶) ↔ 𝑓:𝐶⟶𝐵)) |
| 10 | 4, 9 | mpbird 257 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑m 𝐶)) → 𝑓 ∈ (𝐵 ↑m 𝐶)) |
| 11 | 10 | ex 412 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑓 ∈ (𝐴 ↑m 𝐶) → 𝑓 ∈ (𝐵 ↑m 𝐶))) |
| 12 | 11 | ssrdv 3964 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ⟶wf 6527 (class class class)co 7405 ↑m cmap 8840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 |
| This theorem is referenced by: mapdom1 9156 ssfin3ds 10344 ingru 10829 resspsrbas 21934 resspsradd 21935 resspsrmul 21936 plyss 26156 eulerpartlem1 34399 eulerpartlemn 34413 reprss 34649 poimirlem29 37673 poimirlem30 37674 poimirlem31 37675 poimirlem32 37676 poimir 37677 broucube 37678 diophrw 42782 diophin 42795 diophun 42796 eq0rabdioph 42799 eqrabdioph 42800 rabdiophlem1 42824 diophren 42836 k0004ss1 44175 ixpssmapc 45097 mapss2 45229 difmap 45231 inmap 45233 mapssbi 45237 iunmapss 45239 dvnprodlem2 45976 etransclem24 46287 etransclem25 46288 etransclem26 46289 etransclem28 46291 etransclem35 46298 etransclem37 46300 qndenserrnbllem 46323 qndenserrn 46328 hoissrrn 46578 hoissrrn2 46607 hspmbl 46658 opnvonmbllem2 46662 ovolval2lem 46672 ovolval2 46673 ovolval3 46676 ovolval4lem2 46679 ovnovollem3 46687 vonvolmbl 46690 smfmullem4 46823 |
| Copyright terms: Public domain | W3C validator |