MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc4uz Structured version   Visualization version   GIF version

Theorem axdc4uz 13909
Description: A version of axdc4 10369 that works on an upper set of integers instead of ω. (Contributed by Mario Carneiro, 8-Jan-2014.)
Hypotheses
Ref Expression
axdc4uz.1 𝑀 ∈ ℤ
axdc4uz.2 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
axdc4uz ((𝐴𝑉𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
Distinct variable groups:   𝑔,𝑘,𝐴   𝐶,𝑔   𝑔,𝐹,𝑘   𝑔,𝑀,𝑘   𝑔,𝑍
Allowed substitution hints:   𝐶(𝑘)   𝑉(𝑔,𝑘)   𝑍(𝑘)

Proof of Theorem axdc4uz
Dummy variables 𝑓 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2817 . . . . 5 (𝑓 = 𝐴 → (𝐶𝑓𝐶𝐴))
2 xpeq2 5644 . . . . . 6 (𝑓 = 𝐴 → (𝑍 × 𝑓) = (𝑍 × 𝐴))
3 pweq 4567 . . . . . . 7 (𝑓 = 𝐴 → 𝒫 𝑓 = 𝒫 𝐴)
43difeq1d 4078 . . . . . 6 (𝑓 = 𝐴 → (𝒫 𝑓 ∖ {∅}) = (𝒫 𝐴 ∖ {∅}))
52, 4feq23d 6651 . . . . 5 (𝑓 = 𝐴 → (𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅}) ↔ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})))
61, 5anbi12d 632 . . . 4 (𝑓 = 𝐴 → ((𝐶𝑓𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) ↔ (𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))))
7 feq3 6636 . . . . . 6 (𝑓 = 𝐴 → (𝑔:𝑍𝑓𝑔:𝑍𝐴))
873anbi1d 1442 . . . . 5 (𝑓 = 𝐴 → ((𝑔:𝑍𝑓 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))) ↔ (𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))))
98exbidv 1921 . . . 4 (𝑓 = 𝐴 → (∃𝑔(𝑔:𝑍𝑓 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))) ↔ ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))))
106, 9imbi12d 344 . . 3 (𝑓 = 𝐴 → (((𝐶𝑓𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝑓 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))) ↔ ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))))
11 axdc4uz.1 . . . 4 𝑀 ∈ ℤ
12 axdc4uz.2 . . . 4 𝑍 = (ℤ𝑀)
13 vex 3442 . . . 4 𝑓 ∈ V
14 eqid 2729 . . . 4 (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)
15 eqid 2729 . . . 4 (𝑛 ∈ ω, 𝑥𝑓 ↦ (((rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)‘𝑛)𝐹𝑥)) = (𝑛 ∈ ω, 𝑥𝑓 ↦ (((rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)‘𝑛)𝐹𝑥))
1611, 12, 13, 14, 15axdc4uzlem 13908 . . 3 ((𝐶𝑓𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝑓 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
1710, 16vtoclg 3511 . 2 (𝐴𝑉 → ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))))
18173impib 1116 1 ((𝐴𝑉𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3438  cdif 3902  c0 4286  𝒫 cpw 4553  {csn 4579  cmpt 5176   × cxp 5621  cres 5625  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  ωcom 7806  reccrdg 8338  1c1 11029   + caddc 11031  cz 12489  cuz 12753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-dc 10359  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754
This theorem is referenced by:  bcthlem5  25244  sdclem1  37722
  Copyright terms: Public domain W3C validator