MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc4uz Structured version   Visualization version   GIF version

Theorem axdc4uz 13202
Description: A version of axdc4 9724 that works on an upper set of integers instead of ω. (Contributed by Mario Carneiro, 8-Jan-2014.)
Hypotheses
Ref Expression
axdc4uz.1 𝑀 ∈ ℤ
axdc4uz.2 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
axdc4uz ((𝐴𝑉𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
Distinct variable groups:   𝑔,𝑘,𝐴   𝐶,𝑔   𝑔,𝐹,𝑘   𝑔,𝑀,𝑘   𝑔,𝑍
Allowed substitution hints:   𝐶(𝑘)   𝑉(𝑔,𝑘)   𝑍(𝑘)

Proof of Theorem axdc4uz
Dummy variables 𝑓 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2871 . . . . 5 (𝑓 = 𝐴 → (𝐶𝑓𝐶𝐴))
2 xpeq2 5464 . . . . . 6 (𝑓 = 𝐴 → (𝑍 × 𝑓) = (𝑍 × 𝐴))
3 pweq 4456 . . . . . . 7 (𝑓 = 𝐴 → 𝒫 𝑓 = 𝒫 𝐴)
43difeq1d 4019 . . . . . 6 (𝑓 = 𝐴 → (𝒫 𝑓 ∖ {∅}) = (𝒫 𝐴 ∖ {∅}))
52, 4feq23d 6377 . . . . 5 (𝑓 = 𝐴 → (𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅}) ↔ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})))
61, 5anbi12d 630 . . . 4 (𝑓 = 𝐴 → ((𝐶𝑓𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) ↔ (𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))))
7 feq3 6365 . . . . . 6 (𝑓 = 𝐴 → (𝑔:𝑍𝑓𝑔:𝑍𝐴))
873anbi1d 1432 . . . . 5 (𝑓 = 𝐴 → ((𝑔:𝑍𝑓 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))) ↔ (𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))))
98exbidv 1899 . . . 4 (𝑓 = 𝐴 → (∃𝑔(𝑔:𝑍𝑓 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))) ↔ ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))))
106, 9imbi12d 346 . . 3 (𝑓 = 𝐴 → (((𝐶𝑓𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝑓 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))) ↔ ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))))
11 axdc4uz.1 . . . 4 𝑀 ∈ ℤ
12 axdc4uz.2 . . . 4 𝑍 = (ℤ𝑀)
13 vex 3440 . . . 4 𝑓 ∈ V
14 eqid 2795 . . . 4 (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)
15 eqid 2795 . . . 4 (𝑛 ∈ ω, 𝑥𝑓 ↦ (((rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)‘𝑛)𝐹𝑥)) = (𝑛 ∈ ω, 𝑥𝑓 ↦ (((rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)‘𝑛)𝐹𝑥))
1611, 12, 13, 14, 15axdc4uzlem 13201 . . 3 ((𝐶𝑓𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝑓 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
1710, 16vtoclg 3510 . 2 (𝐴𝑉 → ((𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))))
18173impib 1109 1 ((𝐴𝑉𝐶𝐴𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍𝐴 ∧ (𝑔𝑀) = 𝐶 ∧ ∀𝑘𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wex 1761  wcel 2081  wral 3105  Vcvv 3437  cdif 3856  c0 4211  𝒫 cpw 4453  {csn 4472  cmpt 5041   × cxp 5441  cres 5445  wf 6221  cfv 6225  (class class class)co 7016  cmpo 7018  ωcom 7436  reccrdg 7897  1c1 10384   + caddc 10386  cz 11829  cuz 12093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-dc 9714  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094
This theorem is referenced by:  bcthlem5  23614  sdclem1  34550
  Copyright terms: Public domain W3C validator