Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axdc4uz | Structured version Visualization version GIF version |
Description: A version of axdc4 9929 that works on an upper set of integers instead of ω. (Contributed by Mario Carneiro, 8-Jan-2014.) |
Ref | Expression |
---|---|
axdc4uz.1 | ⊢ 𝑀 ∈ ℤ |
axdc4uz.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
axdc4uz | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2840 | . . . . 5 ⊢ (𝑓 = 𝐴 → (𝐶 ∈ 𝑓 ↔ 𝐶 ∈ 𝐴)) | |
2 | xpeq2 5549 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑍 × 𝑓) = (𝑍 × 𝐴)) | |
3 | pweq 4513 | . . . . . . 7 ⊢ (𝑓 = 𝐴 → 𝒫 𝑓 = 𝒫 𝐴) | |
4 | 3 | difeq1d 4029 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝒫 𝑓 ∖ {∅}) = (𝒫 𝐴 ∖ {∅})) |
5 | 2, 4 | feq23d 6498 | . . . . 5 ⊢ (𝑓 = 𝐴 → (𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅}) ↔ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))) |
6 | 1, 5 | anbi12d 633 | . . . 4 ⊢ (𝑓 = 𝐴 → ((𝐶 ∈ 𝑓 ∧ 𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) ↔ (𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})))) |
7 | feq3 6486 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑔:𝑍⟶𝑓 ↔ 𝑔:𝑍⟶𝐴)) | |
8 | 7 | 3anbi1d 1437 | . . . . 5 ⊢ (𝑓 = 𝐴 → ((𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) ↔ (𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))))) |
9 | 8 | exbidv 1922 | . . . 4 ⊢ (𝑓 = 𝐴 → (∃𝑔(𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) ↔ ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))))) |
10 | 6, 9 | imbi12d 348 | . . 3 ⊢ (𝑓 = 𝐴 → (((𝐶 ∈ 𝑓 ∧ 𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))))) |
11 | axdc4uz.1 | . . . 4 ⊢ 𝑀 ∈ ℤ | |
12 | axdc4uz.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
13 | vex 3413 | . . . 4 ⊢ 𝑓 ∈ V | |
14 | eqid 2758 | . . . 4 ⊢ (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) | |
15 | eqid 2758 | . . . 4 ⊢ (𝑛 ∈ ω, 𝑥 ∈ 𝑓 ↦ (((rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)‘𝑛)𝐹𝑥)) = (𝑛 ∈ ω, 𝑥 ∈ 𝑓 ↦ (((rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)‘𝑛)𝐹𝑥)) | |
16 | 11, 12, 13, 14, 15 | axdc4uzlem 13413 | . . 3 ⊢ ((𝐶 ∈ 𝑓 ∧ 𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
17 | 10, 16 | vtoclg 3487 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))))) |
18 | 17 | 3impib 1113 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∃wex 1781 ∈ wcel 2111 ∀wral 3070 Vcvv 3409 ∖ cdif 3857 ∅c0 4227 𝒫 cpw 4497 {csn 4525 ↦ cmpt 5116 × cxp 5526 ↾ cres 5530 ⟶wf 6336 ‘cfv 6340 (class class class)co 7156 ∈ cmpo 7158 ωcom 7585 reccrdg 8061 1c1 10589 + caddc 10591 ℤcz 12033 ℤ≥cuz 12295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-dc 9919 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-n0 11948 df-z 12034 df-uz 12296 |
This theorem is referenced by: bcthlem5 24041 sdclem1 35495 |
Copyright terms: Public domain | W3C validator |