| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axdc4uz | Structured version Visualization version GIF version | ||
| Description: A version of axdc4 10369 that works on an upper set of integers instead of ω. (Contributed by Mario Carneiro, 8-Jan-2014.) |
| Ref | Expression |
|---|---|
| axdc4uz.1 | ⊢ 𝑀 ∈ ℤ |
| axdc4uz.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| axdc4uz | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . . 5 ⊢ (𝑓 = 𝐴 → (𝐶 ∈ 𝑓 ↔ 𝐶 ∈ 𝐴)) | |
| 2 | xpeq2 5644 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑍 × 𝑓) = (𝑍 × 𝐴)) | |
| 3 | pweq 4567 | . . . . . . 7 ⊢ (𝑓 = 𝐴 → 𝒫 𝑓 = 𝒫 𝐴) | |
| 4 | 3 | difeq1d 4078 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝒫 𝑓 ∖ {∅}) = (𝒫 𝐴 ∖ {∅})) |
| 5 | 2, 4 | feq23d 6651 | . . . . 5 ⊢ (𝑓 = 𝐴 → (𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅}) ↔ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))) |
| 6 | 1, 5 | anbi12d 632 | . . . 4 ⊢ (𝑓 = 𝐴 → ((𝐶 ∈ 𝑓 ∧ 𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) ↔ (𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})))) |
| 7 | feq3 6636 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑔:𝑍⟶𝑓 ↔ 𝑔:𝑍⟶𝐴)) | |
| 8 | 7 | 3anbi1d 1442 | . . . . 5 ⊢ (𝑓 = 𝐴 → ((𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) ↔ (𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))))) |
| 9 | 8 | exbidv 1921 | . . . 4 ⊢ (𝑓 = 𝐴 → (∃𝑔(𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) ↔ ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))))) |
| 10 | 6, 9 | imbi12d 344 | . . 3 ⊢ (𝑓 = 𝐴 → (((𝐶 ∈ 𝑓 ∧ 𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))))) |
| 11 | axdc4uz.1 | . . . 4 ⊢ 𝑀 ∈ ℤ | |
| 12 | axdc4uz.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 13 | vex 3442 | . . . 4 ⊢ 𝑓 ∈ V | |
| 14 | eqid 2729 | . . . 4 ⊢ (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) | |
| 15 | eqid 2729 | . . . 4 ⊢ (𝑛 ∈ ω, 𝑥 ∈ 𝑓 ↦ (((rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)‘𝑛)𝐹𝑥)) = (𝑛 ∈ ω, 𝑥 ∈ 𝑓 ↦ (((rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)‘𝑛)𝐹𝑥)) | |
| 16 | 11, 12, 13, 14, 15 | axdc4uzlem 13908 | . . 3 ⊢ ((𝐶 ∈ 𝑓 ∧ 𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
| 17 | 10, 16 | vtoclg 3511 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))))) |
| 18 | 17 | 3impib 1116 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ∖ cdif 3902 ∅c0 4286 𝒫 cpw 4553 {csn 4579 ↦ cmpt 5176 × cxp 5621 ↾ cres 5625 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ωcom 7806 reccrdg 8338 1c1 11029 + caddc 11031 ℤcz 12489 ℤ≥cuz 12753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-dc 10359 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 |
| This theorem is referenced by: bcthlem5 25244 sdclem1 37722 |
| Copyright terms: Public domain | W3C validator |