| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axdc4uz | Structured version Visualization version GIF version | ||
| Description: A version of axdc4 10416 that works on an upper set of integers instead of ω. (Contributed by Mario Carneiro, 8-Jan-2014.) |
| Ref | Expression |
|---|---|
| axdc4uz.1 | ⊢ 𝑀 ∈ ℤ |
| axdc4uz.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| axdc4uz | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2818 | . . . . 5 ⊢ (𝑓 = 𝐴 → (𝐶 ∈ 𝑓 ↔ 𝐶 ∈ 𝐴)) | |
| 2 | xpeq2 5662 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑍 × 𝑓) = (𝑍 × 𝐴)) | |
| 3 | pweq 4580 | . . . . . . 7 ⊢ (𝑓 = 𝐴 → 𝒫 𝑓 = 𝒫 𝐴) | |
| 4 | 3 | difeq1d 4091 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝒫 𝑓 ∖ {∅}) = (𝒫 𝐴 ∖ {∅})) |
| 5 | 2, 4 | feq23d 6686 | . . . . 5 ⊢ (𝑓 = 𝐴 → (𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅}) ↔ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))) |
| 6 | 1, 5 | anbi12d 632 | . . . 4 ⊢ (𝑓 = 𝐴 → ((𝐶 ∈ 𝑓 ∧ 𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) ↔ (𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})))) |
| 7 | feq3 6671 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑔:𝑍⟶𝑓 ↔ 𝑔:𝑍⟶𝐴)) | |
| 8 | 7 | 3anbi1d 1442 | . . . . 5 ⊢ (𝑓 = 𝐴 → ((𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) ↔ (𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))))) |
| 9 | 8 | exbidv 1921 | . . . 4 ⊢ (𝑓 = 𝐴 → (∃𝑔(𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) ↔ ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))))) |
| 10 | 6, 9 | imbi12d 344 | . . 3 ⊢ (𝑓 = 𝐴 → (((𝐶 ∈ 𝑓 ∧ 𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))))) |
| 11 | axdc4uz.1 | . . . 4 ⊢ 𝑀 ∈ ℤ | |
| 12 | axdc4uz.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 13 | vex 3454 | . . . 4 ⊢ 𝑓 ∈ V | |
| 14 | eqid 2730 | . . . 4 ⊢ (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) | |
| 15 | eqid 2730 | . . . 4 ⊢ (𝑛 ∈ ω, 𝑥 ∈ 𝑓 ↦ (((rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)‘𝑛)𝐹𝑥)) = (𝑛 ∈ ω, 𝑥 ∈ 𝑓 ↦ (((rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)‘𝑛)𝐹𝑥)) | |
| 16 | 11, 12, 13, 14, 15 | axdc4uzlem 13955 | . . 3 ⊢ ((𝐶 ∈ 𝑓 ∧ 𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
| 17 | 10, 16 | vtoclg 3523 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))))) |
| 18 | 17 | 3impib 1116 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∖ cdif 3914 ∅c0 4299 𝒫 cpw 4566 {csn 4592 ↦ cmpt 5191 × cxp 5639 ↾ cres 5643 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ωcom 7845 reccrdg 8380 1c1 11076 + caddc 11078 ℤcz 12536 ℤ≥cuz 12800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-dc 10406 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 |
| This theorem is referenced by: bcthlem5 25235 sdclem1 37744 |
| Copyright terms: Public domain | W3C validator |