Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axdc4uz | Structured version Visualization version GIF version |
Description: A version of axdc4 10143 that works on an upper set of integers instead of ω. (Contributed by Mario Carneiro, 8-Jan-2014.) |
Ref | Expression |
---|---|
axdc4uz.1 | ⊢ 𝑀 ∈ ℤ |
axdc4uz.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
axdc4uz | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . . . 5 ⊢ (𝑓 = 𝐴 → (𝐶 ∈ 𝑓 ↔ 𝐶 ∈ 𝐴)) | |
2 | xpeq2 5601 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑍 × 𝑓) = (𝑍 × 𝐴)) | |
3 | pweq 4546 | . . . . . . 7 ⊢ (𝑓 = 𝐴 → 𝒫 𝑓 = 𝒫 𝐴) | |
4 | 3 | difeq1d 4052 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝒫 𝑓 ∖ {∅}) = (𝒫 𝐴 ∖ {∅})) |
5 | 2, 4 | feq23d 6579 | . . . . 5 ⊢ (𝑓 = 𝐴 → (𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅}) ↔ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅}))) |
6 | 1, 5 | anbi12d 630 | . . . 4 ⊢ (𝑓 = 𝐴 → ((𝐶 ∈ 𝑓 ∧ 𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) ↔ (𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})))) |
7 | feq3 6567 | . . . . . 6 ⊢ (𝑓 = 𝐴 → (𝑔:𝑍⟶𝑓 ↔ 𝑔:𝑍⟶𝐴)) | |
8 | 7 | 3anbi1d 1438 | . . . . 5 ⊢ (𝑓 = 𝐴 → ((𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) ↔ (𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))))) |
9 | 8 | exbidv 1925 | . . . 4 ⊢ (𝑓 = 𝐴 → (∃𝑔(𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) ↔ ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))))) |
10 | 6, 9 | imbi12d 344 | . . 3 ⊢ (𝑓 = 𝐴 → (((𝐶 ∈ 𝑓 ∧ 𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))))) |
11 | axdc4uz.1 | . . . 4 ⊢ 𝑀 ∈ ℤ | |
12 | axdc4uz.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
13 | vex 3426 | . . . 4 ⊢ 𝑓 ∈ V | |
14 | eqid 2738 | . . . 4 ⊢ (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) = (rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω) | |
15 | eqid 2738 | . . . 4 ⊢ (𝑛 ∈ ω, 𝑥 ∈ 𝑓 ↦ (((rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)‘𝑛)𝐹𝑥)) = (𝑛 ∈ ω, 𝑥 ∈ 𝑓 ↦ (((rec((𝑦 ∈ V ↦ (𝑦 + 1)), 𝑀) ↾ ω)‘𝑛)𝐹𝑥)) | |
16 | 11, 12, 13, 14, 15 | axdc4uzlem 13631 | . . 3 ⊢ ((𝐶 ∈ 𝑓 ∧ 𝐹:(𝑍 × 𝑓)⟶(𝒫 𝑓 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝑓 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
17 | 10, 16 | vtoclg 3495 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))))) |
18 | 17 | 3impib 1114 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴 ∧ 𝐹:(𝑍 × 𝐴)⟶(𝒫 𝐴 ∖ {∅})) → ∃𝑔(𝑔:𝑍⟶𝐴 ∧ (𝑔‘𝑀) = 𝐶 ∧ ∀𝑘 ∈ 𝑍 (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∖ cdif 3880 ∅c0 4253 𝒫 cpw 4530 {csn 4558 ↦ cmpt 5153 × cxp 5578 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ωcom 7687 reccrdg 8211 1c1 10803 + caddc 10805 ℤcz 12249 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-dc 10133 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 |
This theorem is referenced by: bcthlem5 24397 sdclem1 35828 |
Copyright terms: Public domain | W3C validator |