MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconstg Structured version   Visualization version   GIF version

Theorem fconstg 6794
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.)
Assertion
Ref Expression
fconstg (𝐵𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵})

Proof of Theorem fconstg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4635 . . . 4 (𝑥 = 𝐵 → {𝑥} = {𝐵})
21xpeq2d 5714 . . 3 (𝑥 = 𝐵 → (𝐴 × {𝑥}) = (𝐴 × {𝐵}))
3 feq1 6715 . . . 4 ((𝐴 × {𝑥}) = (𝐴 × {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝑥}))
4 feq3 6717 . . . 4 ({𝑥} = {𝐵} → ((𝐴 × {𝐵}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
53, 4sylan9bb 509 . . 3 (((𝐴 × {𝑥}) = (𝐴 × {𝐵}) ∧ {𝑥} = {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
62, 1, 5syl2anc 584 . 2 (𝑥 = 𝐵 → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
7 vex 3483 . . 3 𝑥 ∈ V
87fconst 6793 . 2 (𝐴 × {𝑥}):𝐴⟶{𝑥}
96, 8vtoclg 3553 1 (𝐵𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  {csn 4625   × cxp 5682  wf 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-fun 6562  df-fn 6563  df-f 6564
This theorem is referenced by:  fnconstg  6795  fconst6g  6796  xpsng  7158  fvconst2g  7223  fconst2g  7224  symgpssefmnd  19414  xkoptsub  23663  mbfconstlem  25663  i1fmulclem  25738  i1fmulc  25739  itg2mulclem  25782  dvcmulf  25983  dvef  26019  coemulc  26295  resf1o  32742  locfinref  33841  ccatmulgnn0dir  34558  frlmvscadiccat  42521
  Copyright terms: Public domain W3C validator