MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconstg Structured version   Visualization version   GIF version

Theorem fconstg 6434
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.)
Assertion
Ref Expression
fconstg (𝐵𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵})

Proof of Theorem fconstg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4482 . . . 4 (𝑥 = 𝐵 → {𝑥} = {𝐵})
21xpeq2d 5473 . . 3 (𝑥 = 𝐵 → (𝐴 × {𝑥}) = (𝐴 × {𝐵}))
3 feq1 6363 . . . 4 ((𝐴 × {𝑥}) = (𝐴 × {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝑥}))
4 feq3 6365 . . . 4 ({𝑥} = {𝐵} → ((𝐴 × {𝐵}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
53, 4sylan9bb 510 . . 3 (((𝐴 × {𝑥}) = (𝐴 × {𝐵}) ∧ {𝑥} = {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
62, 1, 5syl2anc 584 . 2 (𝑥 = 𝐵 → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
7 vex 3440 . . 3 𝑥 ∈ V
87fconst 6433 . 2 (𝐴 × {𝑥}):𝐴⟶{𝑥}
96, 8vtoclg 3510 1 (𝐵𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207   = wceq 1522  wcel 2081  {csn 4472   × cxp 5441  wf 6221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-fun 6227  df-fn 6228  df-f 6229
This theorem is referenced by:  fnconstg  6435  fconst6g  6436  xpsng  6764  fvconst2g  6831  fconst2g  6832  xkoptsub  21946  mbfconstlem  23911  i1fmulclem  23986  i1fmulc  23987  itg2mulclem  24030  dvcmulf  24225  dvef  24260  coemulc  24528  resf1o  30154  locfinref  30722  ccatmulgnn0dir  31429  frlmvscadiccat  38672
  Copyright terms: Public domain W3C validator