Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fconstg | Structured version Visualization version GIF version |
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.) |
Ref | Expression |
---|---|
fconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4568 | . . . 4 ⊢ (𝑥 = 𝐵 → {𝑥} = {𝐵}) | |
2 | 1 | xpeq2d 5610 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴 × {𝑥}) = (𝐴 × {𝐵})) |
3 | feq1 6565 | . . . 4 ⊢ ((𝐴 × {𝑥}) = (𝐴 × {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝑥})) | |
4 | feq3 6567 | . . . 4 ⊢ ({𝑥} = {𝐵} → ((𝐴 × {𝐵}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) | |
5 | 3, 4 | sylan9bb 509 | . . 3 ⊢ (((𝐴 × {𝑥}) = (𝐴 × {𝐵}) ∧ {𝑥} = {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) |
6 | 2, 1, 5 | syl2anc 583 | . 2 ⊢ (𝑥 = 𝐵 → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) |
7 | vex 3426 | . . 3 ⊢ 𝑥 ∈ V | |
8 | 7 | fconst 6644 | . 2 ⊢ (𝐴 × {𝑥}):𝐴⟶{𝑥} |
9 | 6, 8 | vtoclg 3495 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {csn 4558 × cxp 5578 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: fnconstg 6646 fconst6g 6647 xpsng 6993 fvconst2g 7059 fconst2g 7060 symgpssefmnd 18918 xkoptsub 22713 mbfconstlem 24696 i1fmulclem 24772 i1fmulc 24773 itg2mulclem 24816 dvcmulf 25014 dvef 25049 coemulc 25321 resf1o 30967 locfinref 31693 ccatmulgnn0dir 32421 frlmvscadiccat 40163 |
Copyright terms: Public domain | W3C validator |