MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconstg Structured version   Visualization version   GIF version

Theorem fconstg 6606
Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.)
Assertion
Ref Expression
fconstg (𝐵𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵})

Proof of Theorem fconstg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4551 . . . 4 (𝑥 = 𝐵 → {𝑥} = {𝐵})
21xpeq2d 5581 . . 3 (𝑥 = 𝐵 → (𝐴 × {𝑥}) = (𝐴 × {𝐵}))
3 feq1 6526 . . . 4 ((𝐴 × {𝑥}) = (𝐴 × {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝑥}))
4 feq3 6528 . . . 4 ({𝑥} = {𝐵} → ((𝐴 × {𝐵}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
53, 4sylan9bb 513 . . 3 (((𝐴 × {𝑥}) = (𝐴 × {𝐵}) ∧ {𝑥} = {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
62, 1, 5syl2anc 587 . 2 (𝑥 = 𝐵 → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵}))
7 vex 3412 . . 3 𝑥 ∈ V
87fconst 6605 . 2 (𝐴 × {𝑥}):𝐴⟶{𝑥}
96, 8vtoclg 3481 1 (𝐵𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2110  {csn 4541   × cxp 5549  wf 6376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-fun 6382  df-fn 6383  df-f 6384
This theorem is referenced by:  fnconstg  6607  fconst6g  6608  xpsng  6954  fvconst2g  7017  fconst2g  7018  symgpssefmnd  18788  xkoptsub  22551  mbfconstlem  24524  i1fmulclem  24600  i1fmulc  24601  itg2mulclem  24644  dvcmulf  24842  dvef  24877  coemulc  25149  resf1o  30785  locfinref  31505  ccatmulgnn0dir  32233  frlmvscadiccat  39950
  Copyright terms: Public domain W3C validator