| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconstg | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.) |
| Ref | Expression |
|---|---|
| fconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4602 | . . . 4 ⊢ (𝑥 = 𝐵 → {𝑥} = {𝐵}) | |
| 2 | 1 | xpeq2d 5671 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴 × {𝑥}) = (𝐴 × {𝐵})) |
| 3 | feq1 6669 | . . . 4 ⊢ ((𝐴 × {𝑥}) = (𝐴 × {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝑥})) | |
| 4 | feq3 6671 | . . . 4 ⊢ ({𝑥} = {𝐵} → ((𝐴 × {𝐵}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) | |
| 5 | 3, 4 | sylan9bb 509 | . . 3 ⊢ (((𝐴 × {𝑥}) = (𝐴 × {𝐵}) ∧ {𝑥} = {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) |
| 6 | 2, 1, 5 | syl2anc 584 | . 2 ⊢ (𝑥 = 𝐵 → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) |
| 7 | vex 3454 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | 7 | fconst 6749 | . 2 ⊢ (𝐴 × {𝑥}):𝐴⟶{𝑥} |
| 9 | 6, 8 | vtoclg 3523 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4592 × cxp 5639 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: fnconstg 6751 fconst6g 6752 xpsng 7114 fvconst2g 7179 fconst2g 7180 symgpssefmnd 19333 xkoptsub 23548 mbfconstlem 25535 i1fmulclem 25610 i1fmulc 25611 itg2mulclem 25654 dvcmulf 25855 dvef 25891 coemulc 26167 resf1o 32660 locfinref 33838 ccatmulgnn0dir 34540 frlmvscadiccat 42501 |
| Copyright terms: Public domain | W3C validator |