| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fconstg | Structured version Visualization version GIF version | ||
| Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.) |
| Ref | Expression |
|---|---|
| fconstg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4585 | . . . 4 ⊢ (𝑥 = 𝐵 → {𝑥} = {𝐵}) | |
| 2 | 1 | xpeq2d 5649 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴 × {𝑥}) = (𝐴 × {𝐵})) |
| 3 | feq1 6634 | . . . 4 ⊢ ((𝐴 × {𝑥}) = (𝐴 × {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝑥})) | |
| 4 | feq3 6636 | . . . 4 ⊢ ({𝑥} = {𝐵} → ((𝐴 × {𝐵}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) | |
| 5 | 3, 4 | sylan9bb 509 | . . 3 ⊢ (((𝐴 × {𝑥}) = (𝐴 × {𝐵}) ∧ {𝑥} = {𝐵}) → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) |
| 6 | 2, 1, 5 | syl2anc 584 | . 2 ⊢ (𝑥 = 𝐵 → ((𝐴 × {𝑥}):𝐴⟶{𝑥} ↔ (𝐴 × {𝐵}):𝐴⟶{𝐵})) |
| 7 | vex 3441 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | 7 | fconst 6714 | . 2 ⊢ (𝐴 × {𝑥}):𝐴⟶{𝑥} |
| 9 | 6, 8 | vtoclg 3508 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 {csn 4575 × cxp 5617 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fnconstg 6716 fconst6g 6717 xpsng 7078 fvconst2g 7142 fconst2g 7143 symgpssefmnd 19310 xkoptsub 23570 mbfconstlem 25556 i1fmulclem 25631 i1fmulc 25632 itg2mulclem 25675 dvcmulf 25876 dvef 25912 coemulc 26188 resf1o 32717 locfinref 33875 ccatmulgnn0dir 34576 frlmvscadiccat 42624 |
| Copyright terms: Public domain | W3C validator |