| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fliftfund | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 is the unique function defined by 𝐹‘𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
| flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
| flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
| fliftfun.4 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐶) |
| fliftfun.5 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐷) |
| fliftfund.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 = 𝐶)) → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| fliftfund | ⊢ (𝜑 → Fun 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fliftfund.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 = 𝐶)) → 𝐵 = 𝐷) | |
| 2 | 1 | 3exp2 1355 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 → (𝑦 ∈ 𝑋 → (𝐴 = 𝐶 → 𝐵 = 𝐷)))) |
| 3 | 2 | imp32 418 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐴 = 𝐶 → 𝐵 = 𝐷)) |
| 4 | 3 | ralrimivva 3176 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷)) |
| 5 | flift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
| 6 | flift.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
| 7 | flift.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
| 8 | fliftfun.4 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐶) | |
| 9 | fliftfun.5 | . . 3 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐷) | |
| 10 | 5, 6, 7, 8, 9 | fliftfun 7255 | . 2 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷))) |
| 11 | 4, 10 | mpbird 257 | 1 ⊢ (𝜑 → Fun 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 〈cop 4583 ↦ cmpt 5176 ran crn 5622 Fun wfun 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 |
| This theorem is referenced by: cygznlem2a 21513 pi1xfrf 25000 pi1cof 25006 |
| Copyright terms: Public domain | W3C validator |