MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftfund Structured version   Visualization version   GIF version

Theorem fliftfund 7333
Description: The function 𝐹 is the unique function defined by 𝐹𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
fliftfun.4 (𝑥 = 𝑦𝐴 = 𝐶)
fliftfun.5 (𝑥 = 𝑦𝐵 = 𝐷)
fliftfund.6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝐴 = 𝐶)) → 𝐵 = 𝐷)
Assertion
Ref Expression
fliftfund (𝜑 → Fun 𝐹)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶   𝑥,𝑦,𝑅   𝑥,𝐷   𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑦)   𝐹(𝑥)

Proof of Theorem fliftfund
StepHypRef Expression
1 fliftfund.6 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝐴 = 𝐶)) → 𝐵 = 𝐷)
213exp2 1353 . . . 4 (𝜑 → (𝑥𝑋 → (𝑦𝑋 → (𝐴 = 𝐶𝐵 = 𝐷))))
32imp32 418 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐴 = 𝐶𝐵 = 𝐷))
43ralrimivva 3200 . 2 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝐴 = 𝐶𝐵 = 𝐷))
5 flift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
6 flift.2 . . 3 ((𝜑𝑥𝑋) → 𝐴𝑅)
7 flift.3 . . 3 ((𝜑𝑥𝑋) → 𝐵𝑆)
8 fliftfun.4 . . 3 (𝑥 = 𝑦𝐴 = 𝐶)
9 fliftfun.5 . . 3 (𝑥 = 𝑦𝐵 = 𝐷)
105, 6, 7, 8, 9fliftfun 7332 . 2 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑋𝑦𝑋 (𝐴 = 𝐶𝐵 = 𝐷)))
114, 10mpbird 257 1 (𝜑 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  cop 4637  cmpt 5231  ran crn 5690  Fun wfun 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571
This theorem is referenced by:  cygznlem2a  21604  pi1xfrf  25100  pi1cof  25106
  Copyright terms: Public domain W3C validator