MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftfund Structured version   Visualization version   GIF version

Theorem fliftfund 7216
Description: The function 𝐹 is the unique function defined by 𝐹𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
fliftfun.4 (𝑥 = 𝑦𝐴 = 𝐶)
fliftfun.5 (𝑥 = 𝑦𝐵 = 𝐷)
fliftfund.6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝐴 = 𝐶)) → 𝐵 = 𝐷)
Assertion
Ref Expression
fliftfund (𝜑 → Fun 𝐹)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶   𝑥,𝑦,𝑅   𝑥,𝐷   𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑦)   𝐹(𝑥)

Proof of Theorem fliftfund
StepHypRef Expression
1 fliftfund.6 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝐴 = 𝐶)) → 𝐵 = 𝐷)
213exp2 1354 . . . 4 (𝜑 → (𝑥𝑋 → (𝑦𝑋 → (𝐴 = 𝐶𝐵 = 𝐷))))
32imp32 420 . . 3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐴 = 𝐶𝐵 = 𝐷))
43ralrimivva 3194 . 2 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝐴 = 𝐶𝐵 = 𝐷))
5 flift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
6 flift.2 . . 3 ((𝜑𝑥𝑋) → 𝐴𝑅)
7 flift.3 . . 3 ((𝜑𝑥𝑋) → 𝐵𝑆)
8 fliftfun.4 . . 3 (𝑥 = 𝑦𝐴 = 𝐶)
9 fliftfun.5 . . 3 (𝑥 = 𝑦𝐵 = 𝐷)
105, 6, 7, 8, 9fliftfun 7215 . 2 (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑋𝑦𝑋 (𝐴 = 𝐶𝐵 = 𝐷)))
114, 10mpbird 257 1 (𝜑 → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  wral 3062  cop 4571  cmpt 5164  ran crn 5601  Fun wfun 6452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fv 6466
This theorem is referenced by:  cygznlem2a  20824  pi1xfrf  24265  pi1cof  24271
  Copyright terms: Public domain W3C validator