Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fliftfuns | Structured version Visualization version GIF version |
Description: The function 𝐹 is the unique function defined by 𝐹‘𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftfuns | ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
2 | nfcv 2919 | . . . . 5 ⊢ Ⅎ𝑦〈𝐴, 𝐵〉 | |
3 | nfcsb1v 3831 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 | |
4 | nfcsb1v 3831 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
5 | 3, 4 | nfop 4782 | . . . . 5 ⊢ Ⅎ𝑥〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉 |
6 | csbeq1a 3821 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) | |
7 | csbeq1a 3821 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
8 | 6, 7 | opeq12d 4774 | . . . . 5 ⊢ (𝑥 = 𝑦 → 〈𝐴, 𝐵〉 = 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
9 | 2, 5, 8 | cbvmpt 5137 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑦 ∈ 𝑋 ↦ 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
10 | 9 | rneqi 5783 | . . 3 ⊢ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = ran (𝑦 ∈ 𝑋 ↦ 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
11 | 1, 10 | eqtri 2781 | . 2 ⊢ 𝐹 = ran (𝑦 ∈ 𝑋 ↦ 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
12 | flift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
13 | 12 | ralrimiva 3113 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑅) |
14 | 3 | nfel1 2935 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅 |
15 | 6 | eleq1d 2836 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑅 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅)) |
16 | 14, 15 | rspc 3531 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑅 → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅)) |
17 | 13, 16 | mpan9 510 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅) |
18 | flift.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
19 | 18 | ralrimiva 3113 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆) |
20 | 4 | nfel1 2935 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆 |
21 | 7 | eleq1d 2836 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ 𝑆 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆)) |
22 | 20, 21 | rspc 3531 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆 → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆)) |
23 | 19, 22 | mpan9 510 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆) |
24 | csbeq1 3810 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | |
25 | csbeq1 3810 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | |
26 | 11, 17, 23, 24, 25 | fliftfun 7065 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ⦋csb 3807 〈cop 4531 ↦ cmpt 5116 ran crn 5529 Fun wfun 6334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |