| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fliftfuns | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 is the unique function defined by 𝐹‘𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
| flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
| flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fliftfuns | ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
| 2 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑦〈𝐴, 𝐵〉 | |
| 3 | nfcsb1v 3877 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 | |
| 4 | nfcsb1v 3877 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 5 | 3, 4 | nfop 4843 | . . . . 5 ⊢ Ⅎ𝑥〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉 |
| 6 | csbeq1a 3867 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) | |
| 7 | csbeq1a 3867 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 8 | 6, 7 | opeq12d 4835 | . . . . 5 ⊢ (𝑥 = 𝑦 → 〈𝐴, 𝐵〉 = 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
| 9 | 2, 5, 8 | cbvmpt 5197 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑦 ∈ 𝑋 ↦ 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
| 10 | 9 | rneqi 5883 | . . 3 ⊢ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = ran (𝑦 ∈ 𝑋 ↦ 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
| 11 | 1, 10 | eqtri 2752 | . 2 ⊢ 𝐹 = ran (𝑦 ∈ 𝑋 ↦ 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
| 12 | flift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
| 13 | 12 | ralrimiva 3121 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑅) |
| 14 | 3 | nfel1 2908 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅 |
| 15 | 6 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑅 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅)) |
| 16 | 14, 15 | rspc 3567 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑅 → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅)) |
| 17 | 13, 16 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅) |
| 18 | flift.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
| 19 | 18 | ralrimiva 3121 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆) |
| 20 | 4 | nfel1 2908 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆 |
| 21 | 7 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ 𝑆 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆)) |
| 22 | 20, 21 | rspc 3567 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆 → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆)) |
| 23 | 19, 22 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆) |
| 24 | csbeq1 3856 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | |
| 25 | csbeq1 3856 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | |
| 26 | 11, 17, 23, 24, 25 | fliftfun 7253 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⦋csb 3853 〈cop 4585 ↦ cmpt 5176 ran crn 5624 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |