![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fliftfuns | Structured version Visualization version GIF version |
Description: The function 𝐹 is the unique function defined by 𝐹‘𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftfuns | ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
2 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑦〈𝐴, 𝐵〉 | |
3 | nfcsb1v 3946 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 | |
4 | nfcsb1v 3946 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
5 | 3, 4 | nfop 4913 | . . . . 5 ⊢ Ⅎ𝑥〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉 |
6 | csbeq1a 3935 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) | |
7 | csbeq1a 3935 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
8 | 6, 7 | opeq12d 4905 | . . . . 5 ⊢ (𝑥 = 𝑦 → 〈𝐴, 𝐵〉 = 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
9 | 2, 5, 8 | cbvmpt 5277 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑦 ∈ 𝑋 ↦ 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
10 | 9 | rneqi 5962 | . . 3 ⊢ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = ran (𝑦 ∈ 𝑋 ↦ 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
11 | 1, 10 | eqtri 2768 | . 2 ⊢ 𝐹 = ran (𝑦 ∈ 𝑋 ↦ 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
12 | flift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
13 | 12 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑅) |
14 | 3 | nfel1 2925 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅 |
15 | 6 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑅 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅)) |
16 | 14, 15 | rspc 3623 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑅 → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅)) |
17 | 13, 16 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅) |
18 | flift.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
19 | 18 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆) |
20 | 4 | nfel1 2925 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆 |
21 | 7 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ 𝑆 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆)) |
22 | 20, 21 | rspc 3623 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆 → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆)) |
23 | 19, 22 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆) |
24 | csbeq1 3924 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | |
25 | csbeq1 3924 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | |
26 | 11, 17, 23, 24, 25 | fliftfun 7348 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⦋csb 3921 〈cop 4654 ↦ cmpt 5249 ran crn 5701 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |