| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fliftfuns | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 is the unique function defined by 𝐹‘𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
| flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
| flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fliftfuns | ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
| 2 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑦〈𝐴, 𝐵〉 | |
| 3 | nfcsb1v 3874 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 | |
| 4 | nfcsb1v 3874 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 5 | 3, 4 | nfop 4841 | . . . . 5 ⊢ Ⅎ𝑥〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉 |
| 6 | csbeq1a 3864 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) | |
| 7 | csbeq1a 3864 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 8 | 6, 7 | opeq12d 4833 | . . . . 5 ⊢ (𝑥 = 𝑦 → 〈𝐴, 𝐵〉 = 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
| 9 | 2, 5, 8 | cbvmpt 5193 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑦 ∈ 𝑋 ↦ 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
| 10 | 9 | rneqi 5877 | . . 3 ⊢ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = ran (𝑦 ∈ 𝑋 ↦ 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
| 11 | 1, 10 | eqtri 2754 | . 2 ⊢ 𝐹 = ran (𝑦 ∈ 𝑋 ↦ 〈⦋𝑦 / 𝑥⦌𝐴, ⦋𝑦 / 𝑥⦌𝐵〉) |
| 12 | flift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
| 13 | 12 | ralrimiva 3124 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑅) |
| 14 | 3 | nfel1 2911 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅 |
| 15 | 6 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑅 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅)) |
| 16 | 14, 15 | rspc 3565 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑅 → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅)) |
| 17 | 13, 16 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑅) |
| 18 | flift.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
| 19 | 18 | ralrimiva 3124 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆) |
| 20 | 4 | nfel1 2911 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆 |
| 21 | 7 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ 𝑆 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆)) |
| 22 | 20, 21 | rspc 3565 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑆 → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆)) |
| 23 | 19, 22 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝑆) |
| 24 | csbeq1 3853 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | |
| 25 | csbeq1 3853 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | |
| 26 | 11, 17, 23, 24, 25 | fliftfun 7246 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⦋csb 3850 〈cop 4582 ↦ cmpt 5172 ran crn 5617 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |