Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpm3cl2 Structured version   Visualization version   GIF version

Theorem cycpm3cl2 30877
 Description: Closure of the 3-cycles in the class of 3-cycles. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
cycpm3.c 𝐶 = (toCyc‘𝐷)
cycpm3.s 𝑆 = (SymGrp‘𝐷)
cycpm3.d (𝜑𝐷𝑉)
cycpm3.i (𝜑𝐼𝐷)
cycpm3.j (𝜑𝐽𝐷)
cycpm3.k (𝜑𝐾𝐷)
cycpm3.1 (𝜑𝐼𝐽)
cycpm3.2 (𝜑𝐽𝐾)
cycpm3.3 (𝜑𝐾𝐼)
Assertion
Ref Expression
cycpm3cl2 (𝜑 → (𝐶‘⟨“𝐼𝐽𝐾”⟩) ∈ (𝐶 “ (♯ “ {3})))

Proof of Theorem cycpm3cl2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpm3.d . . . 4 (𝜑𝐷𝑉)
2 cycpm3.c . . . . 5 𝐶 = (toCyc‘𝐷)
3 cycpm3.s . . . . 5 𝑆 = (SymGrp‘𝐷)
4 eqid 2798 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
52, 3, 4tocycf 30858 . . . 4 (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
61, 5syl 17 . . 3 (𝜑𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
76ffnd 6496 . 2 (𝜑𝐶 Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
8 id 22 . . . 4 (𝑤 = ⟨“𝐼𝐽𝐾”⟩ → 𝑤 = ⟨“𝐼𝐽𝐾”⟩)
9 dmeq 5742 . . . 4 (𝑤 = ⟨“𝐼𝐽𝐾”⟩ → dom 𝑤 = dom ⟨“𝐼𝐽𝐾”⟩)
10 eqidd 2799 . . . 4 (𝑤 = ⟨“𝐼𝐽𝐾”⟩ → 𝐷 = 𝐷)
118, 9, 10f1eq123d 6591 . . 3 (𝑤 = ⟨“𝐼𝐽𝐾”⟩ → (𝑤:dom 𝑤1-1𝐷 ↔ ⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩–1-1𝐷))
12 cycpm3.i . . . 4 (𝜑𝐼𝐷)
13 cycpm3.j . . . 4 (𝜑𝐽𝐷)
14 cycpm3.k . . . 4 (𝜑𝐾𝐷)
1512, 13, 14s3cld 14245 . . 3 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷)
16 cycpm3.1 . . . 4 (𝜑𝐼𝐽)
17 cycpm3.2 . . . 4 (𝜑𝐽𝐾)
18 cycpm3.3 . . . 4 (𝜑𝐾𝐼)
1912, 13, 14, 16, 17, 18s3f1 30693 . . 3 (𝜑 → ⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩–1-1𝐷)
2011, 15, 19elrabd 3632 . 2 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
21 s3clhash 30694 . . 3 ⟨“𝐼𝐽𝐾”⟩ ∈ (♯ “ {3})
2221a1i 11 . 2 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ (♯ “ {3}))
237, 20, 22fnfvimad 6984 1 (𝜑 → (𝐶‘⟨“𝐼𝐽𝐾”⟩) ∈ (𝐶 “ (♯ “ {3})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  {crab 3110  {csn 4528  ◡ccnv 5522  dom cdm 5523   “ cima 5526  ⟶wf 6328  –1-1→wf1 6329  ‘cfv 6332  3c3 11699  ♯chash 13706  Word cword 13877  ⟨“cs3 14215  Basecbs 16495  SymGrpcsymg 18508  toCycctocyc 30847 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-map 8409  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-sup 8908  df-inf 8909  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-xnn0 11976  df-z 11990  df-uz 12252  df-rp 12398  df-fz 12906  df-fzo 13049  df-fl 13177  df-mod 13253  df-hash 13707  df-word 13878  df-concat 13934  df-s1 13961  df-substr 14014  df-pfx 14044  df-csh 14162  df-s2 14221  df-s3 14222  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-tset 16596  df-efmnd 18046  df-symg 18509  df-tocyc 30848 This theorem is referenced by:  cyc3genpmlem  30892
 Copyright terms: Public domain W3C validator