![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpm3cl2 | Structured version Visualization version GIF version |
Description: Closure of the 3-cycles in the class of 3-cycles. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
Ref | Expression |
---|---|
cycpm3.c | ⊢ 𝐶 = (toCyc‘𝐷) |
cycpm3.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
cycpm3.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
cycpm3.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
cycpm3.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
cycpm3.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
cycpm3.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
cycpm3.2 | ⊢ (𝜑 → 𝐽 ≠ 𝐾) |
cycpm3.3 | ⊢ (𝜑 → 𝐾 ≠ 𝐼) |
Ref | Expression |
---|---|
cycpm3cl2 | ⊢ (𝜑 → (𝐶‘〈“𝐼𝐽𝐾”〉) ∈ (𝐶 “ (◡♯ “ {3}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycpm3.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
2 | cycpm3.c | . . . . 5 ⊢ 𝐶 = (toCyc‘𝐷) | |
3 | cycpm3.s | . . . . 5 ⊢ 𝑆 = (SymGrp‘𝐷) | |
4 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
5 | 2, 3, 4 | tocycf 33120 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → 𝐶:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
7 | 6 | ffnd 6738 | . 2 ⊢ (𝜑 → 𝐶 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
8 | id 22 | . . . 4 ⊢ (𝑤 = 〈“𝐼𝐽𝐾”〉 → 𝑤 = 〈“𝐼𝐽𝐾”〉) | |
9 | dmeq 5917 | . . . 4 ⊢ (𝑤 = 〈“𝐼𝐽𝐾”〉 → dom 𝑤 = dom 〈“𝐼𝐽𝐾”〉) | |
10 | eqidd 2736 | . . . 4 ⊢ (𝑤 = 〈“𝐼𝐽𝐾”〉 → 𝐷 = 𝐷) | |
11 | 8, 9, 10 | f1eq123d 6841 | . . 3 ⊢ (𝑤 = 〈“𝐼𝐽𝐾”〉 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉–1-1→𝐷)) |
12 | cycpm3.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
13 | cycpm3.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
14 | cycpm3.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
15 | 12, 13, 14 | s3cld 14908 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷) |
16 | cycpm3.1 | . . . 4 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
17 | cycpm3.2 | . . . 4 ⊢ (𝜑 → 𝐽 ≠ 𝐾) | |
18 | cycpm3.3 | . . . 4 ⊢ (𝜑 → 𝐾 ≠ 𝐼) | |
19 | 12, 13, 14, 16, 17, 18 | s3f1 32916 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉–1-1→𝐷) |
20 | 11, 15, 19 | elrabd 3697 | . 2 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
21 | s3clhash 32917 | . . 3 ⊢ 〈“𝐼𝐽𝐾”〉 ∈ (◡♯ “ {3}) | |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 ∈ (◡♯ “ {3})) |
23 | 7, 20, 22 | fnfvimad 7254 | 1 ⊢ (𝜑 → (𝐶‘〈“𝐼𝐽𝐾”〉) ∈ (𝐶 “ (◡♯ “ {3}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 {crab 3433 {csn 4631 ◡ccnv 5688 dom cdm 5689 “ cima 5692 ⟶wf 6559 –1-1→wf1 6560 ‘cfv 6563 3c3 12320 ♯chash 14366 Word cword 14549 〈“cs3 14878 Basecbs 17245 SymGrpcsymg 19401 toCycctocyc 33109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-hash 14367 df-word 14550 df-concat 14606 df-s1 14631 df-substr 14676 df-pfx 14706 df-csh 14824 df-s2 14884 df-s3 14885 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-tset 17317 df-efmnd 18895 df-symg 19402 df-tocyc 33110 |
This theorem is referenced by: cyc3genpmlem 33154 |
Copyright terms: Public domain | W3C validator |