![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpm3cl2 | Structured version Visualization version GIF version |
Description: Closure of the 3-cycles in the class of 3-cycles. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
Ref | Expression |
---|---|
cycpm3.c | β’ πΆ = (toCycβπ·) |
cycpm3.s | β’ π = (SymGrpβπ·) |
cycpm3.d | β’ (π β π· β π) |
cycpm3.i | β’ (π β πΌ β π·) |
cycpm3.j | β’ (π β π½ β π·) |
cycpm3.k | β’ (π β πΎ β π·) |
cycpm3.1 | β’ (π β πΌ β π½) |
cycpm3.2 | β’ (π β π½ β πΎ) |
cycpm3.3 | β’ (π β πΎ β πΌ) |
Ref | Expression |
---|---|
cycpm3cl2 | β’ (π β (πΆββ¨βπΌπ½πΎββ©) β (πΆ β (β‘β― β {3}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycpm3.d | . . . 4 β’ (π β π· β π) | |
2 | cycpm3.c | . . . . 5 β’ πΆ = (toCycβπ·) | |
3 | cycpm3.s | . . . . 5 β’ π = (SymGrpβπ·) | |
4 | eqid 2726 | . . . . 5 β’ (Baseβπ) = (Baseβπ) | |
5 | 2, 3, 4 | tocycf 32782 | . . . 4 β’ (π· β π β πΆ:{π€ β Word π· β£ π€:dom π€β1-1βπ·}βΆ(Baseβπ)) |
6 | 1, 5 | syl 17 | . . 3 β’ (π β πΆ:{π€ β Word π· β£ π€:dom π€β1-1βπ·}βΆ(Baseβπ)) |
7 | 6 | ffnd 6712 | . 2 β’ (π β πΆ Fn {π€ β Word π· β£ π€:dom π€β1-1βπ·}) |
8 | id 22 | . . . 4 β’ (π€ = β¨βπΌπ½πΎββ© β π€ = β¨βπΌπ½πΎββ©) | |
9 | dmeq 5897 | . . . 4 β’ (π€ = β¨βπΌπ½πΎββ© β dom π€ = dom β¨βπΌπ½πΎββ©) | |
10 | eqidd 2727 | . . . 4 β’ (π€ = β¨βπΌπ½πΎββ© β π· = π·) | |
11 | 8, 9, 10 | f1eq123d 6819 | . . 3 β’ (π€ = β¨βπΌπ½πΎββ© β (π€:dom π€β1-1βπ· β β¨βπΌπ½πΎββ©:dom β¨βπΌπ½πΎββ©β1-1βπ·)) |
12 | cycpm3.i | . . . 4 β’ (π β πΌ β π·) | |
13 | cycpm3.j | . . . 4 β’ (π β π½ β π·) | |
14 | cycpm3.k | . . . 4 β’ (π β πΎ β π·) | |
15 | 12, 13, 14 | s3cld 14829 | . . 3 β’ (π β β¨βπΌπ½πΎββ© β Word π·) |
16 | cycpm3.1 | . . . 4 β’ (π β πΌ β π½) | |
17 | cycpm3.2 | . . . 4 β’ (π β π½ β πΎ) | |
18 | cycpm3.3 | . . . 4 β’ (π β πΎ β πΌ) | |
19 | 12, 13, 14, 16, 17, 18 | s3f1 32618 | . . 3 β’ (π β β¨βπΌπ½πΎββ©:dom β¨βπΌπ½πΎββ©β1-1βπ·) |
20 | 11, 15, 19 | elrabd 3680 | . 2 β’ (π β β¨βπΌπ½πΎββ© β {π€ β Word π· β£ π€:dom π€β1-1βπ·}) |
21 | s3clhash 32619 | . . 3 β’ β¨βπΌπ½πΎββ© β (β‘β― β {3}) | |
22 | 21 | a1i 11 | . 2 β’ (π β β¨βπΌπ½πΎββ© β (β‘β― β {3})) |
23 | 7, 20, 22 | fnfvimad 7231 | 1 β’ (π β (πΆββ¨βπΌπ½πΎββ©) β (πΆ β (β‘β― β {3}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wne 2934 {crab 3426 {csn 4623 β‘ccnv 5668 dom cdm 5669 β cima 5672 βΆwf 6533 β1-1βwf1 6534 βcfv 6537 3c3 12272 β―chash 14295 Word cword 14470 β¨βcs3 14799 Basecbs 17153 SymGrpcsymg 19286 toCycctocyc 32771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-rp 12981 df-fz 13491 df-fzo 13634 df-fl 13763 df-mod 13841 df-hash 14296 df-word 14471 df-concat 14527 df-s1 14552 df-substr 14597 df-pfx 14627 df-csh 14745 df-s2 14805 df-s3 14806 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-tset 17225 df-efmnd 18794 df-symg 19287 df-tocyc 32772 |
This theorem is referenced by: cyc3genpmlem 32816 |
Copyright terms: Public domain | W3C validator |