Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpm3cl2 Structured version   Visualization version   GIF version

Theorem cycpm3cl2 31403
Description: Closure of the 3-cycles in the class of 3-cycles. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
cycpm3.c 𝐶 = (toCyc‘𝐷)
cycpm3.s 𝑆 = (SymGrp‘𝐷)
cycpm3.d (𝜑𝐷𝑉)
cycpm3.i (𝜑𝐼𝐷)
cycpm3.j (𝜑𝐽𝐷)
cycpm3.k (𝜑𝐾𝐷)
cycpm3.1 (𝜑𝐼𝐽)
cycpm3.2 (𝜑𝐽𝐾)
cycpm3.3 (𝜑𝐾𝐼)
Assertion
Ref Expression
cycpm3cl2 (𝜑 → (𝐶‘⟨“𝐼𝐽𝐾”⟩) ∈ (𝐶 “ (♯ “ {3})))

Proof of Theorem cycpm3cl2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpm3.d . . . 4 (𝜑𝐷𝑉)
2 cycpm3.c . . . . 5 𝐶 = (toCyc‘𝐷)
3 cycpm3.s . . . . 5 𝑆 = (SymGrp‘𝐷)
4 eqid 2738 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
52, 3, 4tocycf 31384 . . . 4 (𝐷𝑉𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
61, 5syl 17 . . 3 (𝜑𝐶:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
76ffnd 6601 . 2 (𝜑𝐶 Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
8 id 22 . . . 4 (𝑤 = ⟨“𝐼𝐽𝐾”⟩ → 𝑤 = ⟨“𝐼𝐽𝐾”⟩)
9 dmeq 5812 . . . 4 (𝑤 = ⟨“𝐼𝐽𝐾”⟩ → dom 𝑤 = dom ⟨“𝐼𝐽𝐾”⟩)
10 eqidd 2739 . . . 4 (𝑤 = ⟨“𝐼𝐽𝐾”⟩ → 𝐷 = 𝐷)
118, 9, 10f1eq123d 6708 . . 3 (𝑤 = ⟨“𝐼𝐽𝐾”⟩ → (𝑤:dom 𝑤1-1𝐷 ↔ ⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩–1-1𝐷))
12 cycpm3.i . . . 4 (𝜑𝐼𝐷)
13 cycpm3.j . . . 4 (𝜑𝐽𝐷)
14 cycpm3.k . . . 4 (𝜑𝐾𝐷)
1512, 13, 14s3cld 14585 . . 3 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷)
16 cycpm3.1 . . . 4 (𝜑𝐼𝐽)
17 cycpm3.2 . . . 4 (𝜑𝐽𝐾)
18 cycpm3.3 . . . 4 (𝜑𝐾𝐼)
1912, 13, 14, 16, 17, 18s3f1 31221 . . 3 (𝜑 → ⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩–1-1𝐷)
2011, 15, 19elrabd 3626 . 2 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
21 s3clhash 31222 . . 3 ⟨“𝐼𝐽𝐾”⟩ ∈ (♯ “ {3})
2221a1i 11 . 2 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ (♯ “ {3}))
237, 20, 22fnfvimad 7110 1 (𝜑 → (𝐶‘⟨“𝐼𝐽𝐾”⟩) ∈ (𝐶 “ (♯ “ {3})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  {crab 3068  {csn 4561  ccnv 5588  dom cdm 5589  cima 5592  wf 6429  1-1wf1 6430  cfv 6433  3c3 12029  chash 14044  Word cword 14217  ⟨“cs3 14555  Basecbs 16912  SymGrpcsymg 18974  toCycctocyc 31373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-csh 14502  df-s2 14561  df-s3 14562  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-efmnd 18508  df-symg 18975  df-tocyc 31374
This theorem is referenced by:  cyc3genpmlem  31418
  Copyright terms: Public domain W3C validator