MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndfcl Structured version   Visualization version   GIF version

Theorem 2ndfcl 17440
Description: The second projection functor is a functor onto the right argument. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfcl.t 𝑇 = (𝐶 ×c 𝐷)
1stfcl.c (𝜑𝐶 ∈ Cat)
1stfcl.d (𝜑𝐷 ∈ Cat)
2ndfcl.p 𝑄 = (𝐶 2ndF 𝐷)
Assertion
Ref Expression
2ndfcl (𝜑𝑄 ∈ (𝑇 Func 𝐷))

Proof of Theorem 2ndfcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfcl.t . . . 4 𝑇 = (𝐶 ×c 𝐷)
2 eqid 2819 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2819 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
41, 2, 3xpcbas 17420 . . . 4 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑇)
5 eqid 2819 . . . 4 (Hom ‘𝑇) = (Hom ‘𝑇)
6 1stfcl.c . . . 4 (𝜑𝐶 ∈ Cat)
7 1stfcl.d . . . 4 (𝜑𝐷 ∈ Cat)
8 2ndfcl.p . . . 4 𝑄 = (𝐶 2ndF 𝐷)
91, 4, 5, 6, 7, 82ndfval 17436 . . 3 (𝜑𝑄 = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)))⟩)
10 fo2nd 7702 . . . . . . . 8 2nd :V–onto→V
11 fofun 6584 . . . . . . . 8 (2nd :V–onto→V → Fun 2nd )
1210, 11ax-mp 5 . . . . . . 7 Fun 2nd
13 fvex 6676 . . . . . . . 8 (Base‘𝐶) ∈ V
14 fvex 6676 . . . . . . . 8 (Base‘𝐷) ∈ V
1513, 14xpex 7468 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐷)) ∈ V
16 resfunexg 6970 . . . . . . 7 ((Fun 2nd ∧ ((Base‘𝐶) × (Base‘𝐷)) ∈ V) → (2nd ↾ ((Base‘𝐶) × (Base‘𝐷))) ∈ V)
1712, 15, 16mp2an 690 . . . . . 6 (2nd ↾ ((Base‘𝐶) × (Base‘𝐷))) ∈ V
1815, 15mpoex 7769 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦))) ∈ V
1917, 18op2ndd 7692 . . . . 5 (𝑄 = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)))⟩ → (2nd𝑄) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦))))
209, 19syl 17 . . . 4 (𝜑 → (2nd𝑄) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦))))
2120opeq2d 4802 . . 3 (𝜑 → ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑄)⟩ = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)))⟩)
229, 21eqtr4d 2857 . 2 (𝜑𝑄 = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑄)⟩)
23 eqid 2819 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
24 eqid 2819 . . . 4 (Id‘𝑇) = (Id‘𝑇)
25 eqid 2819 . . . 4 (Id‘𝐷) = (Id‘𝐷)
26 eqid 2819 . . . 4 (comp‘𝑇) = (comp‘𝑇)
27 eqid 2819 . . . 4 (comp‘𝐷) = (comp‘𝐷)
281, 6, 7xpccat 17432 . . . 4 (𝜑𝑇 ∈ Cat)
29 f2ndres 7706 . . . . 5 (2nd ↾ ((Base‘𝐶) × (Base‘𝐷))):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐷)
3029a1i 11 . . . 4 (𝜑 → (2nd ↾ ((Base‘𝐶) × (Base‘𝐷))):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐷))
31 eqid 2819 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦))) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)))
32 ovex 7181 . . . . . . 7 (𝑥(Hom ‘𝑇)𝑦) ∈ V
33 resfunexg 6970 . . . . . . 7 ((Fun 2nd ∧ (𝑥(Hom ‘𝑇)𝑦) ∈ V) → (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)) ∈ V)
3412, 32, 33mp2an 690 . . . . . 6 (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)) ∈ V
3531, 34fnmpoi 7760 . . . . 5 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦))) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷)))
3620fneq1d 6439 . . . . 5 (𝜑 → ((2nd𝑄) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))) ↔ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦))) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷)))))
3735, 36mpbiri 260 . . . 4 (𝜑 → (2nd𝑄) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))))
38 f2ndres 7706 . . . . . 6 (2nd ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))
396adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝐶 ∈ Cat)
407adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝐷 ∈ Cat)
41 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
42 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))
431, 4, 5, 39, 40, 8, 41, 422ndf2 17438 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑄)𝑦) = (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)))
44 eqid 2819 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
451, 4, 44, 23, 5, 41, 42xpchom 17422 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(Hom ‘𝑇)𝑦) = (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))))
4645reseq2d 5846 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)) = (2nd ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))))
4743, 46eqtrd 2854 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑄)𝑦) = (2nd ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))))
4847feq1d 6492 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((𝑥(2nd𝑄)𝑦):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↔ (2nd ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))))
4938, 48mpbiri 260 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑄)𝑦):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
50 fvres 6682 . . . . . . . 8 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (2nd𝑥))
5150ad2antrl 726 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (2nd𝑥))
52 fvres 6682 . . . . . . . 8 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦) = (2nd𝑦))
5352ad2antll 727 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦) = (2nd𝑦))
5451, 53oveq12d 7166 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)(Hom ‘𝐷)((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)) = ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
5545, 54feq23d 6502 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((𝑥(2nd𝑄)𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶(((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)(Hom ‘𝐷)((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)) ↔ (𝑥(2nd𝑄)𝑦):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))))
5649, 55mpbird 259 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑄)𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶(((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)(Hom ‘𝐷)((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)))
5728adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑇 ∈ Cat)
58 simpr 487 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
594, 5, 24, 57, 58catidcl 16945 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘𝑥) ∈ (𝑥(Hom ‘𝑇)𝑥))
6059fvresd 6683 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((2nd ↾ (𝑥(Hom ‘𝑇)𝑥))‘((Id‘𝑇)‘𝑥)) = (2nd ‘((Id‘𝑇)‘𝑥)))
61 1st2nd2 7720 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6261adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6362fveq2d 6667 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘𝑥) = ((Id‘𝑇)‘⟨(1st𝑥), (2nd𝑥)⟩))
646adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝐶 ∈ Cat)
657adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝐷 ∈ Cat)
66 eqid 2819 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
67 xp1st 7713 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st𝑥) ∈ (Base‘𝐶))
6867adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (1st𝑥) ∈ (Base‘𝐶))
69 xp2nd 7714 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd𝑥) ∈ (Base‘𝐷))
7069adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (2nd𝑥) ∈ (Base‘𝐷))
711, 64, 65, 2, 3, 66, 25, 24, 68, 70xpcid 17431 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘⟨(1st𝑥), (2nd𝑥)⟩) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐷)‘(2nd𝑥))⟩)
7263, 71eqtrd 2854 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘𝑥) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐷)‘(2nd𝑥))⟩)
73 fvex 6676 . . . . . . . 8 ((Id‘𝐶)‘(1st𝑥)) ∈ V
74 fvex 6676 . . . . . . . 8 ((Id‘𝐷)‘(2nd𝑥)) ∈ V
7573, 74op2ndd 7692 . . . . . . 7 (((Id‘𝑇)‘𝑥) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐷)‘(2nd𝑥))⟩ → (2nd ‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐷)‘(2nd𝑥)))
7672, 75syl 17 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (2nd ‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐷)‘(2nd𝑥)))
7760, 76eqtrd 2854 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((2nd ↾ (𝑥(Hom ‘𝑇)𝑥))‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐷)‘(2nd𝑥)))
781, 4, 5, 64, 65, 8, 58, 582ndf2 17438 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑥(2nd𝑄)𝑥) = (2nd ↾ (𝑥(Hom ‘𝑇)𝑥)))
7978fveq1d 6665 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((𝑥(2nd𝑄)𝑥)‘((Id‘𝑇)‘𝑥)) = ((2nd ↾ (𝑥(Hom ‘𝑇)𝑥))‘((Id‘𝑇)‘𝑥)))
8050adantl 484 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (2nd𝑥))
8180fveq2d 6667 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝐷)‘((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)) = ((Id‘𝐷)‘(2nd𝑥)))
8277, 79, 813eqtr4d 2864 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((𝑥(2nd𝑄)𝑥)‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐷)‘((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)))
83283ad2ant1 1128 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑇 ∈ Cat)
84 simp21 1201 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
85 simp22 1202 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))
86 simp23 1203 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷)))
87 simp3l 1196 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦))
88 simp3r 1197 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))
894, 5, 26, 83, 84, 85, 86, 87, 88catcocl 16948 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓) ∈ (𝑥(Hom ‘𝑇)𝑧))
9089fvresd 6683 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((2nd ↾ (𝑥(Hom ‘𝑇)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = (2nd ‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)))
911, 4, 5, 26, 84, 85, 86, 87, 88, 27xpcco2nd 17427 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (2nd ‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐷)(2nd𝑧))(2nd𝑓)))
9290, 91eqtrd 2854 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((2nd ↾ (𝑥(Hom ‘𝑇)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐷)(2nd𝑧))(2nd𝑓)))
9363ad2ant1 1128 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝐶 ∈ Cat)
9473ad2ant1 1128 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝐷 ∈ Cat)
951, 4, 5, 93, 94, 8, 84, 862ndf2 17438 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑥(2nd𝑄)𝑧) = (2nd ↾ (𝑥(Hom ‘𝑇)𝑧)))
9695fveq1d 6665 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑄)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = ((2nd ↾ (𝑥(Hom ‘𝑇)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)))
9784fvresd 6683 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (2nd𝑥))
9885fvresd 6683 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦) = (2nd𝑦))
9997, 98opeq12d 4803 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ⟨((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩ = ⟨(2nd𝑥), (2nd𝑦)⟩)
10086fvresd 6683 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧) = (2nd𝑧))
10199, 100oveq12d 7166 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (⟨((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩(comp‘𝐷)((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧)) = (⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐷)(2nd𝑧)))
1021, 4, 5, 93, 94, 8, 85, 862ndf2 17438 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑦(2nd𝑄)𝑧) = (2nd ↾ (𝑦(Hom ‘𝑇)𝑧)))
103102fveq1d 6665 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑦(2nd𝑄)𝑧)‘𝑔) = ((2nd ↾ (𝑦(Hom ‘𝑇)𝑧))‘𝑔))
10488fvresd 6683 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((2nd ↾ (𝑦(Hom ‘𝑇)𝑧))‘𝑔) = (2nd𝑔))
105103, 104eqtrd 2854 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑦(2nd𝑄)𝑧)‘𝑔) = (2nd𝑔))
1061, 4, 5, 93, 94, 8, 84, 852ndf2 17438 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑥(2nd𝑄)𝑦) = (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)))
107106fveq1d 6665 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑄)𝑦)‘𝑓) = ((2nd ↾ (𝑥(Hom ‘𝑇)𝑦))‘𝑓))
10887fvresd 6683 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((2nd ↾ (𝑥(Hom ‘𝑇)𝑦))‘𝑓) = (2nd𝑓))
109107, 108eqtrd 2854 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑄)𝑦)‘𝑓) = (2nd𝑓))
110101, 105, 109oveq123d 7169 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (((𝑦(2nd𝑄)𝑧)‘𝑔)(⟨((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩(comp‘𝐷)((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧))((𝑥(2nd𝑄)𝑦)‘𝑓)) = ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐷)(2nd𝑧))(2nd𝑓)))
11192, 96, 1103eqtr4d 2864 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑄)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = (((𝑦(2nd𝑄)𝑧)‘𝑔)(⟨((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩(comp‘𝐷)((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧))((𝑥(2nd𝑄)𝑦)‘𝑓)))
1124, 3, 5, 23, 24, 25, 26, 27, 28, 7, 30, 37, 56, 82, 111isfuncd 17127 . . 3 (𝜑 → (2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))(𝑇 Func 𝐷)(2nd𝑄))
113 df-br 5058 . . 3 ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))(𝑇 Func 𝐷)(2nd𝑄) ↔ ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑄)⟩ ∈ (𝑇 Func 𝐷))
114112, 113sylib 220 . 2 (𝜑 → ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑄)⟩ ∈ (𝑇 Func 𝐷))
11522, 114eqeltrd 2911 1 (𝜑𝑄 ∈ (𝑇 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  Vcvv 3493  cop 4565   class class class wbr 5057   × cxp 5546  cres 5550  Fun wfun 6342   Fn wfn 6343  wf 6344  ontowfo 6346  cfv 6348  (class class class)co 7148  cmpo 7150  1st c1st 7679  2nd c2nd 7680  Basecbs 16475  Hom chom 16568  compcco 16569  Catccat 16927  Idccid 16928   Func cfunc 17116   ×c cxpc 17410   2ndF c2ndf 17412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-hom 16581  df-cco 16582  df-cat 16931  df-cid 16932  df-func 17120  df-xpc 17414  df-2ndf 17416
This theorem is referenced by:  prf2nd  17447  1st2ndprf  17448  uncfcl  17477  uncf1  17478  uncf2  17479  curf2ndf  17489  yonedalem1  17514  yonedalem21  17515  yonedalem22  17520
  Copyright terms: Public domain W3C validator