MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndfcl Structured version   Visualization version   GIF version

Theorem 2ndfcl 18192
Description: The second projection functor is a functor onto the right argument. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfcl.t 𝑇 = (𝐶 ×c 𝐷)
1stfcl.c (𝜑𝐶 ∈ Cat)
1stfcl.d (𝜑𝐷 ∈ Cat)
2ndfcl.p 𝑄 = (𝐶 2ndF 𝐷)
Assertion
Ref Expression
2ndfcl (𝜑𝑄 ∈ (𝑇 Func 𝐷))

Proof of Theorem 2ndfcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfcl.t . . . 4 𝑇 = (𝐶 ×c 𝐷)
2 eqid 2725 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2725 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
41, 2, 3xpcbas 18172 . . . 4 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑇)
5 eqid 2725 . . . 4 (Hom ‘𝑇) = (Hom ‘𝑇)
6 1stfcl.c . . . 4 (𝜑𝐶 ∈ Cat)
7 1stfcl.d . . . 4 (𝜑𝐷 ∈ Cat)
8 2ndfcl.p . . . 4 𝑄 = (𝐶 2ndF 𝐷)
91, 4, 5, 6, 7, 82ndfval 18188 . . 3 (𝜑𝑄 = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)))⟩)
10 fo2nd 8015 . . . . . . . 8 2nd :V–onto→V
11 fofun 6811 . . . . . . . 8 (2nd :V–onto→V → Fun 2nd )
1210, 11ax-mp 5 . . . . . . 7 Fun 2nd
13 fvex 6909 . . . . . . . 8 (Base‘𝐶) ∈ V
14 fvex 6909 . . . . . . . 8 (Base‘𝐷) ∈ V
1513, 14xpex 7756 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐷)) ∈ V
16 resfunexg 7227 . . . . . . 7 ((Fun 2nd ∧ ((Base‘𝐶) × (Base‘𝐷)) ∈ V) → (2nd ↾ ((Base‘𝐶) × (Base‘𝐷))) ∈ V)
1712, 15, 16mp2an 690 . . . . . 6 (2nd ↾ ((Base‘𝐶) × (Base‘𝐷))) ∈ V
1815, 15mpoex 8084 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦))) ∈ V
1917, 18op2ndd 8005 . . . . 5 (𝑄 = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)))⟩ → (2nd𝑄) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦))))
209, 19syl 17 . . . 4 (𝜑 → (2nd𝑄) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦))))
2120opeq2d 4882 . . 3 (𝜑 → ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑄)⟩ = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)))⟩)
229, 21eqtr4d 2768 . 2 (𝜑𝑄 = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑄)⟩)
23 eqid 2725 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
24 eqid 2725 . . . 4 (Id‘𝑇) = (Id‘𝑇)
25 eqid 2725 . . . 4 (Id‘𝐷) = (Id‘𝐷)
26 eqid 2725 . . . 4 (comp‘𝑇) = (comp‘𝑇)
27 eqid 2725 . . . 4 (comp‘𝐷) = (comp‘𝐷)
281, 6, 7xpccat 18184 . . . 4 (𝜑𝑇 ∈ Cat)
29 f2ndres 8019 . . . . 5 (2nd ↾ ((Base‘𝐶) × (Base‘𝐷))):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐷)
3029a1i 11 . . . 4 (𝜑 → (2nd ↾ ((Base‘𝐶) × (Base‘𝐷))):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐷))
31 eqid 2725 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦))) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)))
32 ovex 7452 . . . . . . 7 (𝑥(Hom ‘𝑇)𝑦) ∈ V
33 resfunexg 7227 . . . . . . 7 ((Fun 2nd ∧ (𝑥(Hom ‘𝑇)𝑦) ∈ V) → (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)) ∈ V)
3412, 32, 33mp2an 690 . . . . . 6 (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)) ∈ V
3531, 34fnmpoi 8075 . . . . 5 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦))) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷)))
3620fneq1d 6648 . . . . 5 (𝜑 → ((2nd𝑄) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))) ↔ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘𝑇)𝑦))) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷)))))
3735, 36mpbiri 257 . . . 4 (𝜑 → (2nd𝑄) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))))
38 f2ndres 8019 . . . . . 6 (2nd ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))
396adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝐶 ∈ Cat)
407adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝐷 ∈ Cat)
41 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
42 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))
431, 4, 5, 39, 40, 8, 41, 422ndf2 18190 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑄)𝑦) = (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)))
44 eqid 2725 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
451, 4, 44, 23, 5, 41, 42xpchom 18174 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(Hom ‘𝑇)𝑦) = (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))))
4645reseq2d 5985 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)) = (2nd ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))))
4743, 46eqtrd 2765 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑄)𝑦) = (2nd ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))))
4847feq1d 6708 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((𝑥(2nd𝑄)𝑦):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)) ↔ (2nd ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))))
4938, 48mpbiri 257 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑄)𝑦):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
50 fvres 6915 . . . . . . . 8 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (2nd𝑥))
5150ad2antrl 726 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (2nd𝑥))
52 fvres 6915 . . . . . . . 8 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦) = (2nd𝑦))
5352ad2antll 727 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦) = (2nd𝑦))
5451, 53oveq12d 7437 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)(Hom ‘𝐷)((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)) = ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
5545, 54feq23d 6718 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((𝑥(2nd𝑄)𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶(((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)(Hom ‘𝐷)((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)) ↔ (𝑥(2nd𝑄)𝑦):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))))
5649, 55mpbird 256 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑄)𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶(((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)(Hom ‘𝐷)((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)))
5728adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑇 ∈ Cat)
58 simpr 483 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
594, 5, 24, 57, 58catidcl 17665 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘𝑥) ∈ (𝑥(Hom ‘𝑇)𝑥))
6059fvresd 6916 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((2nd ↾ (𝑥(Hom ‘𝑇)𝑥))‘((Id‘𝑇)‘𝑥)) = (2nd ‘((Id‘𝑇)‘𝑥)))
61 1st2nd2 8033 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6261adantl 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6362fveq2d 6900 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘𝑥) = ((Id‘𝑇)‘⟨(1st𝑥), (2nd𝑥)⟩))
646adantr 479 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝐶 ∈ Cat)
657adantr 479 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝐷 ∈ Cat)
66 eqid 2725 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
67 xp1st 8026 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st𝑥) ∈ (Base‘𝐶))
6867adantl 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (1st𝑥) ∈ (Base‘𝐶))
69 xp2nd 8027 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd𝑥) ∈ (Base‘𝐷))
7069adantl 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (2nd𝑥) ∈ (Base‘𝐷))
711, 64, 65, 2, 3, 66, 25, 24, 68, 70xpcid 18183 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘⟨(1st𝑥), (2nd𝑥)⟩) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐷)‘(2nd𝑥))⟩)
7263, 71eqtrd 2765 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘𝑥) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐷)‘(2nd𝑥))⟩)
73 fvex 6909 . . . . . . . 8 ((Id‘𝐶)‘(1st𝑥)) ∈ V
74 fvex 6909 . . . . . . . 8 ((Id‘𝐷)‘(2nd𝑥)) ∈ V
7573, 74op2ndd 8005 . . . . . . 7 (((Id‘𝑇)‘𝑥) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐷)‘(2nd𝑥))⟩ → (2nd ‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐷)‘(2nd𝑥)))
7672, 75syl 17 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (2nd ‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐷)‘(2nd𝑥)))
7760, 76eqtrd 2765 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((2nd ↾ (𝑥(Hom ‘𝑇)𝑥))‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐷)‘(2nd𝑥)))
781, 4, 5, 64, 65, 8, 58, 582ndf2 18190 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑥(2nd𝑄)𝑥) = (2nd ↾ (𝑥(Hom ‘𝑇)𝑥)))
7978fveq1d 6898 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((𝑥(2nd𝑄)𝑥)‘((Id‘𝑇)‘𝑥)) = ((2nd ↾ (𝑥(Hom ‘𝑇)𝑥))‘((Id‘𝑇)‘𝑥)))
8050adantl 480 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (2nd𝑥))
8180fveq2d 6900 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝐷)‘((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)) = ((Id‘𝐷)‘(2nd𝑥)))
8277, 79, 813eqtr4d 2775 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((𝑥(2nd𝑄)𝑥)‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐷)‘((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)))
83283ad2ant1 1130 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑇 ∈ Cat)
84 simp21 1203 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
85 simp22 1204 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))
86 simp23 1205 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷)))
87 simp3l 1198 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦))
88 simp3r 1199 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))
894, 5, 26, 83, 84, 85, 86, 87, 88catcocl 17668 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓) ∈ (𝑥(Hom ‘𝑇)𝑧))
9089fvresd 6916 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((2nd ↾ (𝑥(Hom ‘𝑇)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = (2nd ‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)))
911, 4, 5, 26, 84, 85, 86, 87, 88, 27xpcco2nd 18179 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (2nd ‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐷)(2nd𝑧))(2nd𝑓)))
9290, 91eqtrd 2765 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((2nd ↾ (𝑥(Hom ‘𝑇)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐷)(2nd𝑧))(2nd𝑓)))
9363ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝐶 ∈ Cat)
9473ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝐷 ∈ Cat)
951, 4, 5, 93, 94, 8, 84, 862ndf2 18190 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑥(2nd𝑄)𝑧) = (2nd ↾ (𝑥(Hom ‘𝑇)𝑧)))
9695fveq1d 6898 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑄)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = ((2nd ↾ (𝑥(Hom ‘𝑇)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)))
9784fvresd 6916 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (2nd𝑥))
9885fvresd 6916 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦) = (2nd𝑦))
9997, 98opeq12d 4883 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ⟨((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩ = ⟨(2nd𝑥), (2nd𝑦)⟩)
10086fvresd 6916 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧) = (2nd𝑧))
10199, 100oveq12d 7437 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (⟨((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩(comp‘𝐷)((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧)) = (⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐷)(2nd𝑧)))
1021, 4, 5, 93, 94, 8, 85, 862ndf2 18190 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑦(2nd𝑄)𝑧) = (2nd ↾ (𝑦(Hom ‘𝑇)𝑧)))
103102fveq1d 6898 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑦(2nd𝑄)𝑧)‘𝑔) = ((2nd ↾ (𝑦(Hom ‘𝑇)𝑧))‘𝑔))
10488fvresd 6916 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((2nd ↾ (𝑦(Hom ‘𝑇)𝑧))‘𝑔) = (2nd𝑔))
105103, 104eqtrd 2765 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑦(2nd𝑄)𝑧)‘𝑔) = (2nd𝑔))
1061, 4, 5, 93, 94, 8, 84, 852ndf2 18190 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑥(2nd𝑄)𝑦) = (2nd ↾ (𝑥(Hom ‘𝑇)𝑦)))
107106fveq1d 6898 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑄)𝑦)‘𝑓) = ((2nd ↾ (𝑥(Hom ‘𝑇)𝑦))‘𝑓))
10887fvresd 6916 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((2nd ↾ (𝑥(Hom ‘𝑇)𝑦))‘𝑓) = (2nd𝑓))
109107, 108eqtrd 2765 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑄)𝑦)‘𝑓) = (2nd𝑓))
110101, 105, 109oveq123d 7440 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (((𝑦(2nd𝑄)𝑧)‘𝑔)(⟨((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩(comp‘𝐷)((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧))((𝑥(2nd𝑄)𝑦)‘𝑓)) = ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐷)(2nd𝑧))(2nd𝑓)))
11192, 96, 1103eqtr4d 2775 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑄)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = (((𝑦(2nd𝑄)𝑧)‘𝑔)(⟨((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩(comp‘𝐷)((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧))((𝑥(2nd𝑄)𝑦)‘𝑓)))
1124, 3, 5, 23, 24, 25, 26, 27, 28, 7, 30, 37, 56, 82, 111isfuncd 17854 . . 3 (𝜑 → (2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))(𝑇 Func 𝐷)(2nd𝑄))
113 df-br 5150 . . 3 ((2nd ↾ ((Base‘𝐶) × (Base‘𝐷)))(𝑇 Func 𝐷)(2nd𝑄) ↔ ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑄)⟩ ∈ (𝑇 Func 𝐷))
114112, 113sylib 217 . 2 (𝜑 → ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑄)⟩ ∈ (𝑇 Func 𝐷))
11522, 114eqeltrd 2825 1 (𝜑𝑄 ∈ (𝑇 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3461  cop 4636   class class class wbr 5149   × cxp 5676  cres 5680  Fun wfun 6543   Fn wfn 6544  wf 6545  ontowfo 6547  cfv 6549  (class class class)co 7419  cmpo 7421  1st c1st 7992  2nd c2nd 7993  Basecbs 17183  Hom chom 17247  compcco 17248  Catccat 17647  Idccid 17648   Func cfunc 17843   ×c cxpc 18162   2ndF c2ndf 18164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-struct 17119  df-slot 17154  df-ndx 17166  df-base 17184  df-hom 17260  df-cco 17261  df-cat 17651  df-cid 17652  df-func 17847  df-xpc 18166  df-2ndf 18168
This theorem is referenced by:  prf2nd  18199  1st2ndprf  18200  uncfcl  18230  uncf1  18231  uncf2  18232  curf2ndf  18242  yonedalem1  18267  yonedalem21  18268  yonedalem22  18273
  Copyright terms: Public domain W3C validator