MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm3 Structured version   Visualization version   GIF version

Theorem elfm3 23979
Description: An alternate formulation of elementhood in a mapping filter that requires 𝐹 to be onto. (Contributed by Jeff Hankins, 1-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
elfm2.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
elfm3 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑋   𝑥,𝐴   𝑥,𝐿   𝑥,𝑌

Proof of Theorem elfm3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foima 6839 . . . 4 (𝐹:𝑌onto𝑋 → (𝐹𝑌) = 𝑋)
21adantl 481 . . 3 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐹𝑌) = 𝑋)
3 fofun 6835 . . . 4 (𝐹:𝑌onto𝑋 → Fun 𝐹)
4 elfvdm 6957 . . . 4 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
5 funimaexg 6664 . . . 4 ((Fun 𝐹𝑌 ∈ dom fBas) → (𝐹𝑌) ∈ V)
63, 4, 5syl2anr 596 . . 3 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐹𝑌) ∈ V)
72, 6eqeltrrd 2845 . 2 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → 𝑋 ∈ V)
8 fof 6834 . . . . 5 (𝐹:𝑌onto𝑋𝐹:𝑌𝑋)
9 elfm2.l . . . . . 6 𝐿 = (𝑌filGen𝐵)
109elfm2 23977 . . . . 5 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)))
118, 10syl3an3 1165 . . . 4 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)))
12 fgcl 23907 . . . . . . . . . . . 12 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
139, 12eqeltrid 2848 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
14133ad2ant2 1134 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → 𝐿 ∈ (Fil‘𝑌))
1514ad2antrr 725 . . . . . . . . 9 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝐿 ∈ (Fil‘𝑌))
16 simprl 770 . . . . . . . . 9 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝑦𝐿)
17 cnvimass 6111 . . . . . . . . . . . 12 (𝐹𝐴) ⊆ dom 𝐹
18 fofn 6836 . . . . . . . . . . . . 13 (𝐹:𝑌onto𝑋𝐹 Fn 𝑌)
1918fndmd 6684 . . . . . . . . . . . 12 (𝐹:𝑌onto𝑋 → dom 𝐹 = 𝑌)
2017, 19sseqtrid 4061 . . . . . . . . . . 11 (𝐹:𝑌onto𝑋 → (𝐹𝐴) ⊆ 𝑌)
21203ad2ant3 1135 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐹𝐴) ⊆ 𝑌)
2221ad2antrr 725 . . . . . . . . 9 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → (𝐹𝐴) ⊆ 𝑌)
2333ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → Fun 𝐹)
2423ad2antrr 725 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝐿) → Fun 𝐹)
259eleq2i 2836 . . . . . . . . . . . . . . 15 (𝑦𝐿𝑦 ∈ (𝑌filGen𝐵))
26 elfg 23900 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (fBas‘𝑌) → (𝑦 ∈ (𝑌filGen𝐵) ↔ (𝑦𝑌 ∧ ∃𝑧𝐵 𝑧𝑦)))
27263ad2ant2 1134 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝑦 ∈ (𝑌filGen𝐵) ↔ (𝑦𝑌 ∧ ∃𝑧𝐵 𝑧𝑦)))
2827adantr 480 . . . . . . . . . . . . . . 15 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) → (𝑦 ∈ (𝑌filGen𝐵) ↔ (𝑦𝑌 ∧ ∃𝑧𝐵 𝑧𝑦)))
2925, 28bitrid 283 . . . . . . . . . . . . . 14 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) → (𝑦𝐿 ↔ (𝑦𝑌 ∧ ∃𝑧𝐵 𝑧𝑦)))
3029simprbda 498 . . . . . . . . . . . . 13 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝐿) → 𝑦𝑌)
31 sseq2 4035 . . . . . . . . . . . . . . . . 17 (dom 𝐹 = 𝑌 → (𝑦 ⊆ dom 𝐹𝑦𝑌))
3231biimpar 477 . . . . . . . . . . . . . . . 16 ((dom 𝐹 = 𝑌𝑦𝑌) → 𝑦 ⊆ dom 𝐹)
3319, 32sylan 579 . . . . . . . . . . . . . . 15 ((𝐹:𝑌onto𝑋𝑦𝑌) → 𝑦 ⊆ dom 𝐹)
34333ad2antl3 1187 . . . . . . . . . . . . . 14 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝑦𝑌) → 𝑦 ⊆ dom 𝐹)
3534adantlr 714 . . . . . . . . . . . . 13 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝑦 ⊆ dom 𝐹)
3630, 35syldan 590 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝐿) → 𝑦 ⊆ dom 𝐹)
37 funimass3 7087 . . . . . . . . . . . 12 ((Fun 𝐹𝑦 ⊆ dom 𝐹) → ((𝐹𝑦) ⊆ 𝐴𝑦 ⊆ (𝐹𝐴)))
3824, 36, 37syl2anc 583 . . . . . . . . . . 11 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝐿) → ((𝐹𝑦) ⊆ 𝐴𝑦 ⊆ (𝐹𝐴)))
3938biimpd 229 . . . . . . . . . 10 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝐿) → ((𝐹𝑦) ⊆ 𝐴𝑦 ⊆ (𝐹𝐴)))
4039impr 454 . . . . . . . . 9 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝑦 ⊆ (𝐹𝐴))
41 filss 23882 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑌) ∧ (𝑦𝐿 ∧ (𝐹𝐴) ⊆ 𝑌𝑦 ⊆ (𝐹𝐴))) → (𝐹𝐴) ∈ 𝐿)
4215, 16, 22, 40, 41syl13anc 1372 . . . . . . . 8 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → (𝐹𝐴) ∈ 𝐿)
43 foimacnv 6879 . . . . . . . . . . 11 ((𝐹:𝑌onto𝑋𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
4443eqcomd 2746 . . . . . . . . . 10 ((𝐹:𝑌onto𝑋𝐴𝑋) → 𝐴 = (𝐹 “ (𝐹𝐴)))
45443ad2antl3 1187 . . . . . . . . 9 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) → 𝐴 = (𝐹 “ (𝐹𝐴)))
4645adantr 480 . . . . . . . 8 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝐴 = (𝐹 “ (𝐹𝐴)))
47 imaeq2 6085 . . . . . . . . 9 (𝑥 = (𝐹𝐴) → (𝐹𝑥) = (𝐹 “ (𝐹𝐴)))
4847rspceeqv 3658 . . . . . . . 8 (((𝐹𝐴) ∈ 𝐿𝐴 = (𝐹 “ (𝐹𝐴))) → ∃𝑥𝐿 𝐴 = (𝐹𝑥))
4942, 46, 48syl2anc 583 . . . . . . 7 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → ∃𝑥𝐿 𝐴 = (𝐹𝑥))
5049rexlimdvaa 3162 . . . . . 6 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) → (∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴 → ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
5150expimpd 453 . . . . 5 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → ((𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴) → ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
52 simprr 772 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → 𝐴 = (𝐹𝑥))
53 imassrn 6100 . . . . . . . . 9 (𝐹𝑥) ⊆ ran 𝐹
54 forn 6837 . . . . . . . . . . 11 (𝐹:𝑌onto𝑋 → ran 𝐹 = 𝑋)
55543ad2ant3 1135 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → ran 𝐹 = 𝑋)
5655adantr 480 . . . . . . . . 9 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → ran 𝐹 = 𝑋)
5753, 56sseqtrid 4061 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → (𝐹𝑥) ⊆ 𝑋)
5852, 57eqsstrd 4047 . . . . . . 7 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → 𝐴𝑋)
59 eqimss2 4068 . . . . . . . . 9 (𝐴 = (𝐹𝑥) → (𝐹𝑥) ⊆ 𝐴)
60 imaeq2 6085 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
6160sseq1d 4040 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝐹𝑦) ⊆ 𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
6261rspcev 3635 . . . . . . . . 9 ((𝑥𝐿 ∧ (𝐹𝑥) ⊆ 𝐴) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)
6359, 62sylan2 592 . . . . . . . 8 ((𝑥𝐿𝐴 = (𝐹𝑥)) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)
6463adantl 481 . . . . . . 7 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)
6558, 64jca 511 . . . . . 6 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → (𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴))
6665rexlimdvaa 3162 . . . . 5 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (∃𝑥𝐿 𝐴 = (𝐹𝑥) → (𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)))
6751, 66impbid 212 . . . 4 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → ((𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴) ↔ ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
6811, 67bitrd 279 . . 3 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
69683coml 1127 . 2 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋𝑋 ∈ V) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
707, 69mpd3an3 1462 1 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  wss 3976  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567  wf 6569  ontowfo 6571  cfv 6573  (class class class)co 7448  fBascfbas 21375  filGencfg 21376  Filcfil 23874   FilMap cfm 23962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-fbas 21384  df-fg 21385  df-fil 23875  df-fm 23967
This theorem is referenced by:  fmid  23989
  Copyright terms: Public domain W3C validator