MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm3 Structured version   Visualization version   GIF version

Theorem elfm3 23317
Description: An alternate formulation of elementhood in a mapping filter that requires 𝐹 to be onto. (Contributed by Jeff Hankins, 1-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
elfm2.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
elfm3 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑋   𝑥,𝐴   𝑥,𝐿   𝑥,𝑌

Proof of Theorem elfm3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foima 6762 . . . 4 (𝐹:𝑌onto𝑋 → (𝐹𝑌) = 𝑋)
21adantl 483 . . 3 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐹𝑌) = 𝑋)
3 fofun 6758 . . . 4 (𝐹:𝑌onto𝑋 → Fun 𝐹)
4 elfvdm 6880 . . . 4 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
5 funimaexg 6588 . . . 4 ((Fun 𝐹𝑌 ∈ dom fBas) → (𝐹𝑌) ∈ V)
63, 4, 5syl2anr 598 . . 3 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐹𝑌) ∈ V)
72, 6eqeltrrd 2835 . 2 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → 𝑋 ∈ V)
8 fof 6757 . . . . 5 (𝐹:𝑌onto𝑋𝐹:𝑌𝑋)
9 elfm2.l . . . . . 6 𝐿 = (𝑌filGen𝐵)
109elfm2 23315 . . . . 5 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)))
118, 10syl3an3 1166 . . . 4 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)))
12 fgcl 23245 . . . . . . . . . . . 12 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
139, 12eqeltrid 2838 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
14133ad2ant2 1135 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → 𝐿 ∈ (Fil‘𝑌))
1514ad2antrr 725 . . . . . . . . 9 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝐿 ∈ (Fil‘𝑌))
16 simprl 770 . . . . . . . . 9 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝑦𝐿)
17 cnvimass 6034 . . . . . . . . . . . 12 (𝐹𝐴) ⊆ dom 𝐹
18 fofn 6759 . . . . . . . . . . . . 13 (𝐹:𝑌onto𝑋𝐹 Fn 𝑌)
1918fndmd 6608 . . . . . . . . . . . 12 (𝐹:𝑌onto𝑋 → dom 𝐹 = 𝑌)
2017, 19sseqtrid 3997 . . . . . . . . . . 11 (𝐹:𝑌onto𝑋 → (𝐹𝐴) ⊆ 𝑌)
21203ad2ant3 1136 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐹𝐴) ⊆ 𝑌)
2221ad2antrr 725 . . . . . . . . 9 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → (𝐹𝐴) ⊆ 𝑌)
2333ad2ant3 1136 . . . . . . . . . . . . 13 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → Fun 𝐹)
2423ad2antrr 725 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝐿) → Fun 𝐹)
259eleq2i 2826 . . . . . . . . . . . . . . 15 (𝑦𝐿𝑦 ∈ (𝑌filGen𝐵))
26 elfg 23238 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (fBas‘𝑌) → (𝑦 ∈ (𝑌filGen𝐵) ↔ (𝑦𝑌 ∧ ∃𝑧𝐵 𝑧𝑦)))
27263ad2ant2 1135 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝑦 ∈ (𝑌filGen𝐵) ↔ (𝑦𝑌 ∧ ∃𝑧𝐵 𝑧𝑦)))
2827adantr 482 . . . . . . . . . . . . . . 15 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) → (𝑦 ∈ (𝑌filGen𝐵) ↔ (𝑦𝑌 ∧ ∃𝑧𝐵 𝑧𝑦)))
2925, 28bitrid 283 . . . . . . . . . . . . . 14 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) → (𝑦𝐿 ↔ (𝑦𝑌 ∧ ∃𝑧𝐵 𝑧𝑦)))
3029simprbda 500 . . . . . . . . . . . . 13 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝐿) → 𝑦𝑌)
31 sseq2 3971 . . . . . . . . . . . . . . . . 17 (dom 𝐹 = 𝑌 → (𝑦 ⊆ dom 𝐹𝑦𝑌))
3231biimpar 479 . . . . . . . . . . . . . . . 16 ((dom 𝐹 = 𝑌𝑦𝑌) → 𝑦 ⊆ dom 𝐹)
3319, 32sylan 581 . . . . . . . . . . . . . . 15 ((𝐹:𝑌onto𝑋𝑦𝑌) → 𝑦 ⊆ dom 𝐹)
34333ad2antl3 1188 . . . . . . . . . . . . . 14 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝑦𝑌) → 𝑦 ⊆ dom 𝐹)
3534adantlr 714 . . . . . . . . . . . . 13 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝑦 ⊆ dom 𝐹)
3630, 35syldan 592 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝐿) → 𝑦 ⊆ dom 𝐹)
37 funimass3 7005 . . . . . . . . . . . 12 ((Fun 𝐹𝑦 ⊆ dom 𝐹) → ((𝐹𝑦) ⊆ 𝐴𝑦 ⊆ (𝐹𝐴)))
3824, 36, 37syl2anc 585 . . . . . . . . . . 11 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝐿) → ((𝐹𝑦) ⊆ 𝐴𝑦 ⊆ (𝐹𝐴)))
3938biimpd 228 . . . . . . . . . 10 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝐿) → ((𝐹𝑦) ⊆ 𝐴𝑦 ⊆ (𝐹𝐴)))
4039impr 456 . . . . . . . . 9 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝑦 ⊆ (𝐹𝐴))
41 filss 23220 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑌) ∧ (𝑦𝐿 ∧ (𝐹𝐴) ⊆ 𝑌𝑦 ⊆ (𝐹𝐴))) → (𝐹𝐴) ∈ 𝐿)
4215, 16, 22, 40, 41syl13anc 1373 . . . . . . . 8 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → (𝐹𝐴) ∈ 𝐿)
43 foimacnv 6802 . . . . . . . . . . 11 ((𝐹:𝑌onto𝑋𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
4443eqcomd 2739 . . . . . . . . . 10 ((𝐹:𝑌onto𝑋𝐴𝑋) → 𝐴 = (𝐹 “ (𝐹𝐴)))
45443ad2antl3 1188 . . . . . . . . 9 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) → 𝐴 = (𝐹 “ (𝐹𝐴)))
4645adantr 482 . . . . . . . 8 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝐴 = (𝐹 “ (𝐹𝐴)))
47 imaeq2 6010 . . . . . . . . 9 (𝑥 = (𝐹𝐴) → (𝐹𝑥) = (𝐹 “ (𝐹𝐴)))
4847rspceeqv 3596 . . . . . . . 8 (((𝐹𝐴) ∈ 𝐿𝐴 = (𝐹 “ (𝐹𝐴))) → ∃𝑥𝐿 𝐴 = (𝐹𝑥))
4942, 46, 48syl2anc 585 . . . . . . 7 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → ∃𝑥𝐿 𝐴 = (𝐹𝑥))
5049rexlimdvaa 3150 . . . . . 6 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) → (∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴 → ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
5150expimpd 455 . . . . 5 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → ((𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴) → ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
52 simprr 772 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → 𝐴 = (𝐹𝑥))
53 imassrn 6025 . . . . . . . . 9 (𝐹𝑥) ⊆ ran 𝐹
54 forn 6760 . . . . . . . . . . 11 (𝐹:𝑌onto𝑋 → ran 𝐹 = 𝑋)
55543ad2ant3 1136 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → ran 𝐹 = 𝑋)
5655adantr 482 . . . . . . . . 9 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → ran 𝐹 = 𝑋)
5753, 56sseqtrid 3997 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → (𝐹𝑥) ⊆ 𝑋)
5852, 57eqsstrd 3983 . . . . . . 7 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → 𝐴𝑋)
59 eqimss2 4002 . . . . . . . . 9 (𝐴 = (𝐹𝑥) → (𝐹𝑥) ⊆ 𝐴)
60 imaeq2 6010 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
6160sseq1d 3976 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝐹𝑦) ⊆ 𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
6261rspcev 3580 . . . . . . . . 9 ((𝑥𝐿 ∧ (𝐹𝑥) ⊆ 𝐴) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)
6359, 62sylan2 594 . . . . . . . 8 ((𝑥𝐿𝐴 = (𝐹𝑥)) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)
6463adantl 483 . . . . . . 7 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)
6558, 64jca 513 . . . . . 6 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → (𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴))
6665rexlimdvaa 3150 . . . . 5 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (∃𝑥𝐿 𝐴 = (𝐹𝑥) → (𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)))
6751, 66impbid 211 . . . 4 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → ((𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴) ↔ ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
6811, 67bitrd 279 . . 3 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
69683coml 1128 . 2 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋𝑋 ∈ V) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
707, 69mpd3an3 1463 1 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wrex 3070  Vcvv 3444  wss 3911  ccnv 5633  dom cdm 5634  ran crn 5635  cima 5637  Fun wfun 6491  wf 6493  ontowfo 6495  cfv 6497  (class class class)co 7358  fBascfbas 20800  filGencfg 20801  Filcfil 23212   FilMap cfm 23300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-fbas 20809  df-fg 20810  df-fil 23213  df-fm 23305
This theorem is referenced by:  fmid  23327
  Copyright terms: Public domain W3C validator