MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm3 Structured version   Visualization version   GIF version

Theorem elfm3 23813
Description: An alternate formulation of elementhood in a mapping filter that requires 𝐹 to be onto. (Contributed by Jeff Hankins, 1-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
elfm2.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
elfm3 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑋   𝑥,𝐴   𝑥,𝐿   𝑥,𝑌

Proof of Theorem elfm3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foima 6759 . . . 4 (𝐹:𝑌onto𝑋 → (𝐹𝑌) = 𝑋)
21adantl 481 . . 3 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐹𝑌) = 𝑋)
3 fofun 6755 . . . 4 (𝐹:𝑌onto𝑋 → Fun 𝐹)
4 elfvdm 6877 . . . 4 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
5 funimaexg 6587 . . . 4 ((Fun 𝐹𝑌 ∈ dom fBas) → (𝐹𝑌) ∈ V)
63, 4, 5syl2anr 597 . . 3 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐹𝑌) ∈ V)
72, 6eqeltrrd 2829 . 2 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → 𝑋 ∈ V)
8 fof 6754 . . . . 5 (𝐹:𝑌onto𝑋𝐹:𝑌𝑋)
9 elfm2.l . . . . . 6 𝐿 = (𝑌filGen𝐵)
109elfm2 23811 . . . . 5 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)))
118, 10syl3an3 1165 . . . 4 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)))
12 fgcl 23741 . . . . . . . . . . . 12 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
139, 12eqeltrid 2832 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
14133ad2ant2 1134 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → 𝐿 ∈ (Fil‘𝑌))
1514ad2antrr 726 . . . . . . . . 9 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝐿 ∈ (Fil‘𝑌))
16 simprl 770 . . . . . . . . 9 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝑦𝐿)
17 cnvimass 6042 . . . . . . . . . . . 12 (𝐹𝐴) ⊆ dom 𝐹
18 fofn 6756 . . . . . . . . . . . . 13 (𝐹:𝑌onto𝑋𝐹 Fn 𝑌)
1918fndmd 6605 . . . . . . . . . . . 12 (𝐹:𝑌onto𝑋 → dom 𝐹 = 𝑌)
2017, 19sseqtrid 3986 . . . . . . . . . . 11 (𝐹:𝑌onto𝑋 → (𝐹𝐴) ⊆ 𝑌)
21203ad2ant3 1135 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐹𝐴) ⊆ 𝑌)
2221ad2antrr 726 . . . . . . . . 9 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → (𝐹𝐴) ⊆ 𝑌)
2333ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → Fun 𝐹)
2423ad2antrr 726 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝐿) → Fun 𝐹)
259eleq2i 2820 . . . . . . . . . . . . . . 15 (𝑦𝐿𝑦 ∈ (𝑌filGen𝐵))
26 elfg 23734 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ (fBas‘𝑌) → (𝑦 ∈ (𝑌filGen𝐵) ↔ (𝑦𝑌 ∧ ∃𝑧𝐵 𝑧𝑦)))
27263ad2ant2 1134 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝑦 ∈ (𝑌filGen𝐵) ↔ (𝑦𝑌 ∧ ∃𝑧𝐵 𝑧𝑦)))
2827adantr 480 . . . . . . . . . . . . . . 15 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) → (𝑦 ∈ (𝑌filGen𝐵) ↔ (𝑦𝑌 ∧ ∃𝑧𝐵 𝑧𝑦)))
2925, 28bitrid 283 . . . . . . . . . . . . . 14 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) → (𝑦𝐿 ↔ (𝑦𝑌 ∧ ∃𝑧𝐵 𝑧𝑦)))
3029simprbda 498 . . . . . . . . . . . . 13 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝐿) → 𝑦𝑌)
31 sseq2 3970 . . . . . . . . . . . . . . . . 17 (dom 𝐹 = 𝑌 → (𝑦 ⊆ dom 𝐹𝑦𝑌))
3231biimpar 477 . . . . . . . . . . . . . . . 16 ((dom 𝐹 = 𝑌𝑦𝑌) → 𝑦 ⊆ dom 𝐹)
3319, 32sylan 580 . . . . . . . . . . . . . . 15 ((𝐹:𝑌onto𝑋𝑦𝑌) → 𝑦 ⊆ dom 𝐹)
34333ad2antl3 1188 . . . . . . . . . . . . . 14 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝑦𝑌) → 𝑦 ⊆ dom 𝐹)
3534adantlr 715 . . . . . . . . . . . . 13 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝑌) → 𝑦 ⊆ dom 𝐹)
3630, 35syldan 591 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝐿) → 𝑦 ⊆ dom 𝐹)
37 funimass3 7008 . . . . . . . . . . . 12 ((Fun 𝐹𝑦 ⊆ dom 𝐹) → ((𝐹𝑦) ⊆ 𝐴𝑦 ⊆ (𝐹𝐴)))
3824, 36, 37syl2anc 584 . . . . . . . . . . 11 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝐿) → ((𝐹𝑦) ⊆ 𝐴𝑦 ⊆ (𝐹𝐴)))
3938biimpd 229 . . . . . . . . . 10 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ 𝑦𝐿) → ((𝐹𝑦) ⊆ 𝐴𝑦 ⊆ (𝐹𝐴)))
4039impr 454 . . . . . . . . 9 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝑦 ⊆ (𝐹𝐴))
41 filss 23716 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑌) ∧ (𝑦𝐿 ∧ (𝐹𝐴) ⊆ 𝑌𝑦 ⊆ (𝐹𝐴))) → (𝐹𝐴) ∈ 𝐿)
4215, 16, 22, 40, 41syl13anc 1374 . . . . . . . 8 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → (𝐹𝐴) ∈ 𝐿)
43 foimacnv 6799 . . . . . . . . . . 11 ((𝐹:𝑌onto𝑋𝐴𝑋) → (𝐹 “ (𝐹𝐴)) = 𝐴)
4443eqcomd 2735 . . . . . . . . . 10 ((𝐹:𝑌onto𝑋𝐴𝑋) → 𝐴 = (𝐹 “ (𝐹𝐴)))
45443ad2antl3 1188 . . . . . . . . 9 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) → 𝐴 = (𝐹 “ (𝐹𝐴)))
4645adantr 480 . . . . . . . 8 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝐴 = (𝐹 “ (𝐹𝐴)))
47 imaeq2 6016 . . . . . . . . 9 (𝑥 = (𝐹𝐴) → (𝐹𝑥) = (𝐹 “ (𝐹𝐴)))
4847rspceeqv 3608 . . . . . . . 8 (((𝐹𝐴) ∈ 𝐿𝐴 = (𝐹 “ (𝐹𝐴))) → ∃𝑥𝐿 𝐴 = (𝐹𝑥))
4942, 46, 48syl2anc 584 . . . . . . 7 ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) ∧ (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴)) → ∃𝑥𝐿 𝐴 = (𝐹𝑥))
5049rexlimdvaa 3135 . . . . . 6 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ 𝐴𝑋) → (∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴 → ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
5150expimpd 453 . . . . 5 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → ((𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴) → ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
52 simprr 772 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → 𝐴 = (𝐹𝑥))
53 imassrn 6031 . . . . . . . . 9 (𝐹𝑥) ⊆ ran 𝐹
54 forn 6757 . . . . . . . . . . 11 (𝐹:𝑌onto𝑋 → ran 𝐹 = 𝑋)
55543ad2ant3 1135 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → ran 𝐹 = 𝑋)
5655adantr 480 . . . . . . . . 9 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → ran 𝐹 = 𝑋)
5753, 56sseqtrid 3986 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → (𝐹𝑥) ⊆ 𝑋)
5852, 57eqsstrd 3978 . . . . . . 7 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → 𝐴𝑋)
59 eqimss2 4003 . . . . . . . . 9 (𝐴 = (𝐹𝑥) → (𝐹𝑥) ⊆ 𝐴)
60 imaeq2 6016 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
6160sseq1d 3975 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝐹𝑦) ⊆ 𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
6261rspcev 3585 . . . . . . . . 9 ((𝑥𝐿 ∧ (𝐹𝑥) ⊆ 𝐴) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)
6359, 62sylan2 593 . . . . . . . 8 ((𝑥𝐿𝐴 = (𝐹𝑥)) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)
6463adantl 481 . . . . . . 7 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)
6558, 64jca 511 . . . . . 6 (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) ∧ (𝑥𝐿𝐴 = (𝐹𝑥))) → (𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴))
6665rexlimdvaa 3135 . . . . 5 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (∃𝑥𝐿 𝐴 = (𝐹𝑥) → (𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴)))
6751, 66impbid 212 . . . 4 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → ((𝐴𝑋 ∧ ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝐴) ↔ ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
6811, 67bitrd 279 . . 3 ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
69683coml 1127 . 2 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋𝑋 ∈ V) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
707, 69mpd3an3 1464 1 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌onto𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥𝐿 𝐴 = (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444  wss 3911  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  Fun wfun 6493  wf 6495  ontowfo 6497  cfv 6499  (class class class)co 7369  fBascfbas 21228  filGencfg 21229  Filcfil 23708   FilMap cfm 23796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-fbas 21237  df-fg 21238  df-fil 23709  df-fm 23801
This theorem is referenced by:  fmid  23823
  Copyright terms: Public domain W3C validator