Step | Hyp | Ref
| Expression |
1 | | foima 6693 |
. . . 4
⊢ (𝐹:𝑌–onto→𝑋 → (𝐹 “ 𝑌) = 𝑋) |
2 | 1 | adantl 482 |
. . 3
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → (𝐹 “ 𝑌) = 𝑋) |
3 | | fofun 6689 |
. . . 4
⊢ (𝐹:𝑌–onto→𝑋 → Fun 𝐹) |
4 | | elfvdm 6806 |
. . . 4
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas) |
5 | | funimaexg 6520 |
. . . 4
⊢ ((Fun
𝐹 ∧ 𝑌 ∈ dom fBas) → (𝐹 “ 𝑌) ∈ V) |
6 | 3, 4, 5 | syl2anr 597 |
. . 3
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → (𝐹 “ 𝑌) ∈ V) |
7 | 2, 6 | eqeltrrd 2840 |
. 2
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → 𝑋 ∈ V) |
8 | | fof 6688 |
. . . . 5
⊢ (𝐹:𝑌–onto→𝑋 → 𝐹:𝑌⟶𝑋) |
9 | | elfm2.l |
. . . . . 6
⊢ 𝐿 = (𝑌filGen𝐵) |
10 | 9 | elfm2 23099 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝐴))) |
11 | 8, 10 | syl3an3 1164 |
. . . 4
⊢ ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝐴))) |
12 | | fgcl 23029 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌)) |
13 | 9, 12 | eqeltrid 2843 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (Fil‘𝑌)) |
14 | 13 | 3ad2ant2 1133 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → 𝐿 ∈ (Fil‘𝑌)) |
15 | 14 | ad2antrr 723 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑦 ∈ 𝐿 ∧ (𝐹 “ 𝑦) ⊆ 𝐴)) → 𝐿 ∈ (Fil‘𝑌)) |
16 | | simprl 768 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑦 ∈ 𝐿 ∧ (𝐹 “ 𝑦) ⊆ 𝐴)) → 𝑦 ∈ 𝐿) |
17 | | cnvimass 5989 |
. . . . . . . . . . . 12
⊢ (◡𝐹 “ 𝐴) ⊆ dom 𝐹 |
18 | | fofn 6690 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑌–onto→𝑋 → 𝐹 Fn 𝑌) |
19 | 18 | fndmd 6538 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑌–onto→𝑋 → dom 𝐹 = 𝑌) |
20 | 17, 19 | sseqtrid 3973 |
. . . . . . . . . . 11
⊢ (𝐹:𝑌–onto→𝑋 → (◡𝐹 “ 𝐴) ⊆ 𝑌) |
21 | 20 | 3ad2ant3 1134 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → (◡𝐹 “ 𝐴) ⊆ 𝑌) |
22 | 21 | ad2antrr 723 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑦 ∈ 𝐿 ∧ (𝐹 “ 𝑦) ⊆ 𝐴)) → (◡𝐹 “ 𝐴) ⊆ 𝑌) |
23 | 3 | 3ad2ant3 1134 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → Fun 𝐹) |
24 | 23 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑦 ∈ 𝐿) → Fun 𝐹) |
25 | 9 | eleq2i 2830 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐿 ↔ 𝑦 ∈ (𝑌filGen𝐵)) |
26 | | elfg 23022 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ (fBas‘𝑌) → (𝑦 ∈ (𝑌filGen𝐵) ↔ (𝑦 ⊆ 𝑌 ∧ ∃𝑧 ∈ 𝐵 𝑧 ⊆ 𝑦))) |
27 | 26 | 3ad2ant2 1133 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → (𝑦 ∈ (𝑌filGen𝐵) ↔ (𝑦 ⊆ 𝑌 ∧ ∃𝑧 ∈ 𝐵 𝑧 ⊆ 𝑦))) |
28 | 27 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑦 ∈ (𝑌filGen𝐵) ↔ (𝑦 ⊆ 𝑌 ∧ ∃𝑧 ∈ 𝐵 𝑧 ⊆ 𝑦))) |
29 | 25, 28 | bitrid 282 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑦 ∈ 𝐿 ↔ (𝑦 ⊆ 𝑌 ∧ ∃𝑧 ∈ 𝐵 𝑧 ⊆ 𝑦))) |
30 | 29 | simprbda 499 |
. . . . . . . . . . . . 13
⊢ ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑦 ∈ 𝐿) → 𝑦 ⊆ 𝑌) |
31 | | sseq2 3947 |
. . . . . . . . . . . . . . . . 17
⊢ (dom
𝐹 = 𝑌 → (𝑦 ⊆ dom 𝐹 ↔ 𝑦 ⊆ 𝑌)) |
32 | 31 | biimpar 478 |
. . . . . . . . . . . . . . . 16
⊢ ((dom
𝐹 = 𝑌 ∧ 𝑦 ⊆ 𝑌) → 𝑦 ⊆ dom 𝐹) |
33 | 19, 32 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑌–onto→𝑋 ∧ 𝑦 ⊆ 𝑌) → 𝑦 ⊆ dom 𝐹) |
34 | 33 | 3ad2antl3 1186 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝑦 ⊆ 𝑌) → 𝑦 ⊆ dom 𝐹) |
35 | 34 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑦 ⊆ 𝑌) → 𝑦 ⊆ dom 𝐹) |
36 | 30, 35 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑦 ∈ 𝐿) → 𝑦 ⊆ dom 𝐹) |
37 | | funimass3 6931 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 𝑦 ⊆ dom 𝐹) → ((𝐹 “ 𝑦) ⊆ 𝐴 ↔ 𝑦 ⊆ (◡𝐹 “ 𝐴))) |
38 | 24, 36, 37 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑦 ∈ 𝐿) → ((𝐹 “ 𝑦) ⊆ 𝐴 ↔ 𝑦 ⊆ (◡𝐹 “ 𝐴))) |
39 | 38 | biimpd 228 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑦 ∈ 𝐿) → ((𝐹 “ 𝑦) ⊆ 𝐴 → 𝑦 ⊆ (◡𝐹 “ 𝐴))) |
40 | 39 | impr 455 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑦 ∈ 𝐿 ∧ (𝐹 “ 𝑦) ⊆ 𝐴)) → 𝑦 ⊆ (◡𝐹 “ 𝐴)) |
41 | | filss 23004 |
. . . . . . . . 9
⊢ ((𝐿 ∈ (Fil‘𝑌) ∧ (𝑦 ∈ 𝐿 ∧ (◡𝐹 “ 𝐴) ⊆ 𝑌 ∧ 𝑦 ⊆ (◡𝐹 “ 𝐴))) → (◡𝐹 “ 𝐴) ∈ 𝐿) |
42 | 15, 16, 22, 40, 41 | syl13anc 1371 |
. . . . . . . 8
⊢ ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑦 ∈ 𝐿 ∧ (𝐹 “ 𝑦) ⊆ 𝐴)) → (◡𝐹 “ 𝐴) ∈ 𝐿) |
43 | | foimacnv 6733 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑌–onto→𝑋 ∧ 𝐴 ⊆ 𝑋) → (𝐹 “ (◡𝐹 “ 𝐴)) = 𝐴) |
44 | 43 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((𝐹:𝑌–onto→𝑋 ∧ 𝐴 ⊆ 𝑋) → 𝐴 = (𝐹 “ (◡𝐹 “ 𝐴))) |
45 | 44 | 3ad2antl3 1186 |
. . . . . . . . 9
⊢ (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 = (𝐹 “ (◡𝐹 “ 𝐴))) |
46 | 45 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑦 ∈ 𝐿 ∧ (𝐹 “ 𝑦) ⊆ 𝐴)) → 𝐴 = (𝐹 “ (◡𝐹 “ 𝐴))) |
47 | | imaeq2 5965 |
. . . . . . . . 9
⊢ (𝑥 = (◡𝐹 “ 𝐴) → (𝐹 “ 𝑥) = (𝐹 “ (◡𝐹 “ 𝐴))) |
48 | 47 | rspceeqv 3575 |
. . . . . . . 8
⊢ (((◡𝐹 “ 𝐴) ∈ 𝐿 ∧ 𝐴 = (𝐹 “ (◡𝐹 “ 𝐴))) → ∃𝑥 ∈ 𝐿 𝐴 = (𝐹 “ 𝑥)) |
49 | 42, 46, 48 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ (𝑦 ∈ 𝐿 ∧ (𝐹 “ 𝑦) ⊆ 𝐴)) → ∃𝑥 ∈ 𝐿 𝐴 = (𝐹 “ 𝑥)) |
50 | 49 | rexlimdvaa 3214 |
. . . . . 6
⊢ (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ 𝐴 ⊆ 𝑋) → (∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝐴 → ∃𝑥 ∈ 𝐿 𝐴 = (𝐹 “ 𝑥))) |
51 | 50 | expimpd 454 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → ((𝐴 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝐴) → ∃𝑥 ∈ 𝐿 𝐴 = (𝐹 “ 𝑥))) |
52 | | simprr 770 |
. . . . . . . 8
⊢ (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ (𝑥 ∈ 𝐿 ∧ 𝐴 = (𝐹 “ 𝑥))) → 𝐴 = (𝐹 “ 𝑥)) |
53 | | imassrn 5980 |
. . . . . . . . 9
⊢ (𝐹 “ 𝑥) ⊆ ran 𝐹 |
54 | | forn 6691 |
. . . . . . . . . . 11
⊢ (𝐹:𝑌–onto→𝑋 → ran 𝐹 = 𝑋) |
55 | 54 | 3ad2ant3 1134 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → ran 𝐹 = 𝑋) |
56 | 55 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ (𝑥 ∈ 𝐿 ∧ 𝐴 = (𝐹 “ 𝑥))) → ran 𝐹 = 𝑋) |
57 | 53, 56 | sseqtrid 3973 |
. . . . . . . 8
⊢ (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ (𝑥 ∈ 𝐿 ∧ 𝐴 = (𝐹 “ 𝑥))) → (𝐹 “ 𝑥) ⊆ 𝑋) |
58 | 52, 57 | eqsstrd 3959 |
. . . . . . 7
⊢ (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ (𝑥 ∈ 𝐿 ∧ 𝐴 = (𝐹 “ 𝑥))) → 𝐴 ⊆ 𝑋) |
59 | | eqimss2 3978 |
. . . . . . . . 9
⊢ (𝐴 = (𝐹 “ 𝑥) → (𝐹 “ 𝑥) ⊆ 𝐴) |
60 | | imaeq2 5965 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝐹 “ 𝑦) = (𝐹 “ 𝑥)) |
61 | 60 | sseq1d 3952 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → ((𝐹 “ 𝑦) ⊆ 𝐴 ↔ (𝐹 “ 𝑥) ⊆ 𝐴)) |
62 | 61 | rspcev 3561 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐿 ∧ (𝐹 “ 𝑥) ⊆ 𝐴) → ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝐴) |
63 | 59, 62 | sylan2 593 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐿 ∧ 𝐴 = (𝐹 “ 𝑥)) → ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝐴) |
64 | 63 | adantl 482 |
. . . . . . 7
⊢ (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ (𝑥 ∈ 𝐿 ∧ 𝐴 = (𝐹 “ 𝑥))) → ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝐴) |
65 | 58, 64 | jca 512 |
. . . . . 6
⊢ (((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) ∧ (𝑥 ∈ 𝐿 ∧ 𝐴 = (𝐹 “ 𝑥))) → (𝐴 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝐴)) |
66 | 65 | rexlimdvaa 3214 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → (∃𝑥 ∈ 𝐿 𝐴 = (𝐹 “ 𝑥) → (𝐴 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝐴))) |
67 | 51, 66 | impbid 211 |
. . . 4
⊢ ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → ((𝐴 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐿 (𝐹 “ 𝑦) ⊆ 𝐴) ↔ ∃𝑥 ∈ 𝐿 𝐴 = (𝐹 “ 𝑥))) |
68 | 11, 67 | bitrd 278 |
. . 3
⊢ ((𝑋 ∈ V ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥 ∈ 𝐿 𝐴 = (𝐹 “ 𝑥))) |
69 | 68 | 3coml 1126 |
. 2
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋 ∧ 𝑋 ∈ V) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥 ∈ 𝐿 𝐴 = (𝐹 “ 𝑥))) |
70 | 7, 69 | mpd3an3 1461 |
1
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌–onto→𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ ∃𝑥 ∈ 𝐿 𝐴 = (𝐹 “ 𝑥))) |