MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndf2 Structured version   Visualization version   GIF version

Theorem 2ndf2 18157
Description: Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfval.t 𝑇 = (𝐶 ×c 𝐷)
1stfval.b 𝐵 = (Base‘𝑇)
1stfval.h 𝐻 = (Hom ‘𝑇)
1stfval.c (𝜑𝐶 ∈ Cat)
1stfval.d (𝜑𝐷 ∈ Cat)
2ndfval.p 𝑄 = (𝐶 2ndF 𝐷)
2ndf1.p (𝜑𝑅𝐵)
2ndf2.p (𝜑𝑆𝐵)
Assertion
Ref Expression
2ndf2 (𝜑 → (𝑅(2nd𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆)))

Proof of Theorem 2ndf2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfval.t . . . 4 𝑇 = (𝐶 ×c 𝐷)
2 1stfval.b . . . 4 𝐵 = (Base‘𝑇)
3 1stfval.h . . . 4 𝐻 = (Hom ‘𝑇)
4 1stfval.c . . . 4 (𝜑𝐶 ∈ Cat)
5 1stfval.d . . . 4 (𝜑𝐷 ∈ Cat)
6 2ndfval.p . . . 4 𝑄 = (𝐶 2ndF 𝐷)
71, 2, 3, 4, 5, 62ndfval 18155 . . 3 (𝜑𝑄 = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
8 fo2nd 7989 . . . . . 6 2nd :V–onto→V
9 fofun 6773 . . . . . 6 (2nd :V–onto→V → Fun 2nd )
108, 9ax-mp 5 . . . . 5 Fun 2nd
112fvexi 6872 . . . . 5 𝐵 ∈ V
12 resfunexg 7189 . . . . 5 ((Fun 2nd𝐵 ∈ V) → (2nd𝐵) ∈ V)
1310, 11, 12mp2an 692 . . . 4 (2nd𝐵) ∈ V
1411, 11mpoex 8058 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))) ∈ V
1513, 14op2ndd 7979 . . 3 (𝑄 = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩ → (2nd𝑄) = (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))))
167, 15syl 17 . 2 (𝜑 → (2nd𝑄) = (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))))
17 simprl 770 . . . 4 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → 𝑥 = 𝑅)
18 simprr 772 . . . 4 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → 𝑦 = 𝑆)
1917, 18oveq12d 7405 . . 3 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → (𝑥𝐻𝑦) = (𝑅𝐻𝑆))
2019reseq2d 5950 . 2 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → (2nd ↾ (𝑥𝐻𝑦)) = (2nd ↾ (𝑅𝐻𝑆)))
21 2ndf1.p . 2 (𝜑𝑅𝐵)
22 2ndf2.p . 2 (𝜑𝑆𝐵)
23 ovex 7420 . . . 4 (𝑅𝐻𝑆) ∈ V
24 resfunexg 7189 . . . 4 ((Fun 2nd ∧ (𝑅𝐻𝑆) ∈ V) → (2nd ↾ (𝑅𝐻𝑆)) ∈ V)
2510, 23, 24mp2an 692 . . 3 (2nd ↾ (𝑅𝐻𝑆)) ∈ V
2625a1i 11 . 2 (𝜑 → (2nd ↾ (𝑅𝐻𝑆)) ∈ V)
2716, 20, 21, 22, 26ovmpod 7541 1 (𝜑 → (𝑅(2nd𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595  cres 5640  Fun wfun 6505  ontowfo 6509  cfv 6511  (class class class)co 7387  cmpo 7389  2nd c2nd 7967  Basecbs 17179  Hom chom 17231  Catccat 17625   ×c cxpc 18129   2ndF c2ndf 18131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-slot 17152  df-ndx 17164  df-base 17180  df-hom 17244  df-cco 17245  df-xpc 18133  df-2ndf 18135
This theorem is referenced by:  2ndfcl  18159  prf2nd  18166  1st2ndprf  18167  uncf2  18198  curf2ndf  18208  yonedalem22  18239
  Copyright terms: Public domain W3C validator