|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2ndf2 | Structured version Visualization version GIF version | ||
| Description: Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| 1stfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) | 
| 1stfval.b | ⊢ 𝐵 = (Base‘𝑇) | 
| 1stfval.h | ⊢ 𝐻 = (Hom ‘𝑇) | 
| 1stfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) | 
| 1stfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) | 
| 2ndfval.p | ⊢ 𝑄 = (𝐶 2ndF 𝐷) | 
| 2ndf1.p | ⊢ (𝜑 → 𝑅 ∈ 𝐵) | 
| 2ndf2.p | ⊢ (𝜑 → 𝑆 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| 2ndf2 | ⊢ (𝜑 → (𝑅(2nd ‘𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1stfval.t | . . . 4 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
| 2 | 1stfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑇) | |
| 3 | 1stfval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝑇) | |
| 4 | 1stfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | 1stfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 6 | 2ndfval.p | . . . 4 ⊢ 𝑄 = (𝐶 2ndF 𝐷) | |
| 7 | 1, 2, 3, 4, 5, 6 | 2ndfval 18240 | . . 3 ⊢ (𝜑 → 𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉) | 
| 8 | fo2nd 8036 | . . . . . 6 ⊢ 2nd :V–onto→V | |
| 9 | fofun 6820 | . . . . . 6 ⊢ (2nd :V–onto→V → Fun 2nd ) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ Fun 2nd | 
| 11 | 2 | fvexi 6919 | . . . . 5 ⊢ 𝐵 ∈ V | 
| 12 | resfunexg 7236 | . . . . 5 ⊢ ((Fun 2nd ∧ 𝐵 ∈ V) → (2nd ↾ 𝐵) ∈ V) | |
| 13 | 10, 11, 12 | mp2an 692 | . . . 4 ⊢ (2nd ↾ 𝐵) ∈ V | 
| 14 | 11, 11 | mpoex 8105 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))) ∈ V | 
| 15 | 13, 14 | op2ndd 8026 | . . 3 ⊢ (𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉 → (2nd ‘𝑄) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))) | 
| 16 | 7, 15 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘𝑄) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))) | 
| 17 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑥 = 𝑅) | |
| 18 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑦 = 𝑆) | |
| 19 | 17, 18 | oveq12d 7450 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝑥𝐻𝑦) = (𝑅𝐻𝑆)) | 
| 20 | 19 | reseq2d 5996 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (2nd ↾ (𝑥𝐻𝑦)) = (2nd ↾ (𝑅𝐻𝑆))) | 
| 21 | 2ndf1.p | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
| 22 | 2ndf2.p | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝐵) | |
| 23 | ovex 7465 | . . . 4 ⊢ (𝑅𝐻𝑆) ∈ V | |
| 24 | resfunexg 7236 | . . . 4 ⊢ ((Fun 2nd ∧ (𝑅𝐻𝑆) ∈ V) → (2nd ↾ (𝑅𝐻𝑆)) ∈ V) | |
| 25 | 10, 23, 24 | mp2an 692 | . . 3 ⊢ (2nd ↾ (𝑅𝐻𝑆)) ∈ V | 
| 26 | 25 | a1i 11 | . 2 ⊢ (𝜑 → (2nd ↾ (𝑅𝐻𝑆)) ∈ V) | 
| 27 | 16, 20, 21, 22, 26 | ovmpod 7586 | 1 ⊢ (𝜑 → (𝑅(2nd ‘𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 〈cop 4631 ↾ cres 5686 Fun wfun 6554 –onto→wfo 6558 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 2nd c2nd 8014 Basecbs 17248 Hom chom 17309 Catccat 17708 ×c cxpc 18214 2ndF c2ndf 18216 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-slot 17220 df-ndx 17232 df-base 17249 df-hom 17322 df-cco 17323 df-xpc 18218 df-2ndf 18220 | 
| This theorem is referenced by: 2ndfcl 18244 prf2nd 18251 1st2ndprf 18252 uncf2 18283 curf2ndf 18293 yonedalem22 18324 | 
| Copyright terms: Public domain | W3C validator |