![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndf2 | Structured version Visualization version GIF version |
Description: Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
1stfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
1stfval.b | ⊢ 𝐵 = (Base‘𝑇) |
1stfval.h | ⊢ 𝐻 = (Hom ‘𝑇) |
1stfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
1stfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
2ndfval.p | ⊢ 𝑄 = (𝐶 2ndF 𝐷) |
2ndf1.p | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
2ndf2.p | ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
Ref | Expression |
---|---|
2ndf2 | ⊢ (𝜑 → (𝑅(2nd ‘𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stfval.t | . . . 4 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | 1stfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑇) | |
3 | 1stfval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝑇) | |
4 | 1stfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | 1stfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
6 | 2ndfval.p | . . . 4 ⊢ 𝑄 = (𝐶 2ndF 𝐷) | |
7 | 1, 2, 3, 4, 5, 6 | 2ndfval 18142 | . . 3 ⊢ (𝜑 → 𝑄 = ⟨(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩) |
8 | fo2nd 7992 | . . . . . 6 ⊢ 2nd :V–onto→V | |
9 | fofun 6803 | . . . . . 6 ⊢ (2nd :V–onto→V → Fun 2nd ) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ Fun 2nd |
11 | 2 | fvexi 6902 | . . . . 5 ⊢ 𝐵 ∈ V |
12 | resfunexg 7213 | . . . . 5 ⊢ ((Fun 2nd ∧ 𝐵 ∈ V) → (2nd ↾ 𝐵) ∈ V) | |
13 | 10, 11, 12 | mp2an 690 | . . . 4 ⊢ (2nd ↾ 𝐵) ∈ V |
14 | 11, 11 | mpoex 8062 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))) ∈ V |
15 | 13, 14 | op2ndd 7982 | . . 3 ⊢ (𝑄 = ⟨(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩ → (2nd ‘𝑄) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))) |
16 | 7, 15 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘𝑄) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))) |
17 | simprl 769 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑥 = 𝑅) | |
18 | simprr 771 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑦 = 𝑆) | |
19 | 17, 18 | oveq12d 7423 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝑥𝐻𝑦) = (𝑅𝐻𝑆)) |
20 | 19 | reseq2d 5979 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (2nd ↾ (𝑥𝐻𝑦)) = (2nd ↾ (𝑅𝐻𝑆))) |
21 | 2ndf1.p | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
22 | 2ndf2.p | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝐵) | |
23 | ovex 7438 | . . . 4 ⊢ (𝑅𝐻𝑆) ∈ V | |
24 | resfunexg 7213 | . . . 4 ⊢ ((Fun 2nd ∧ (𝑅𝐻𝑆) ∈ V) → (2nd ↾ (𝑅𝐻𝑆)) ∈ V) | |
25 | 10, 23, 24 | mp2an 690 | . . 3 ⊢ (2nd ↾ (𝑅𝐻𝑆)) ∈ V |
26 | 25 | a1i 11 | . 2 ⊢ (𝜑 → (2nd ↾ (𝑅𝐻𝑆)) ∈ V) |
27 | 16, 20, 21, 22, 26 | ovmpod 7556 | 1 ⊢ (𝜑 → (𝑅(2nd ‘𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4633 ↾ cres 5677 Fun wfun 6534 –onto→wfo 6538 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 2nd c2nd 7970 Basecbs 17140 Hom chom 17204 Catccat 17604 ×c cxpc 18116 2ndF c2ndf 18118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-slot 17111 df-ndx 17123 df-base 17141 df-hom 17217 df-cco 17218 df-xpc 18120 df-2ndf 18122 |
This theorem is referenced by: 2ndfcl 18146 prf2nd 18153 1st2ndprf 18154 uncf2 18186 curf2ndf 18196 yonedalem22 18227 |
Copyright terms: Public domain | W3C validator |