Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndf2 Structured version   Visualization version   GIF version

Theorem 2ndf2 17438
 Description: Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfval.t 𝑇 = (𝐶 ×c 𝐷)
1stfval.b 𝐵 = (Base‘𝑇)
1stfval.h 𝐻 = (Hom ‘𝑇)
1stfval.c (𝜑𝐶 ∈ Cat)
1stfval.d (𝜑𝐷 ∈ Cat)
2ndfval.p 𝑄 = (𝐶 2ndF 𝐷)
2ndf1.p (𝜑𝑅𝐵)
2ndf2.p (𝜑𝑆𝐵)
Assertion
Ref Expression
2ndf2 (𝜑 → (𝑅(2nd𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆)))

Proof of Theorem 2ndf2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfval.t . . . 4 𝑇 = (𝐶 ×c 𝐷)
2 1stfval.b . . . 4 𝐵 = (Base‘𝑇)
3 1stfval.h . . . 4 𝐻 = (Hom ‘𝑇)
4 1stfval.c . . . 4 (𝜑𝐶 ∈ Cat)
5 1stfval.d . . . 4 (𝜑𝐷 ∈ Cat)
6 2ndfval.p . . . 4 𝑄 = (𝐶 2ndF 𝐷)
71, 2, 3, 4, 5, 62ndfval 17436 . . 3 (𝜑𝑄 = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
8 fo2nd 7702 . . . . . 6 2nd :V–onto→V
9 fofun 6584 . . . . . 6 (2nd :V–onto→V → Fun 2nd )
108, 9ax-mp 5 . . . . 5 Fun 2nd
112fvexi 6677 . . . . 5 𝐵 ∈ V
12 resfunexg 6970 . . . . 5 ((Fun 2nd𝐵 ∈ V) → (2nd𝐵) ∈ V)
1310, 11, 12mp2an 690 . . . 4 (2nd𝐵) ∈ V
1411, 11mpoex 7769 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))) ∈ V
1513, 14op2ndd 7692 . . 3 (𝑄 = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩ → (2nd𝑄) = (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))))
167, 15syl 17 . 2 (𝜑 → (2nd𝑄) = (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))))
17 simprl 769 . . . 4 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → 𝑥 = 𝑅)
18 simprr 771 . . . 4 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → 𝑦 = 𝑆)
1917, 18oveq12d 7166 . . 3 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → (𝑥𝐻𝑦) = (𝑅𝐻𝑆))
2019reseq2d 5846 . 2 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → (2nd ↾ (𝑥𝐻𝑦)) = (2nd ↾ (𝑅𝐻𝑆)))
21 2ndf1.p . 2 (𝜑𝑅𝐵)
22 2ndf2.p . 2 (𝜑𝑆𝐵)
23 ovex 7181 . . . 4 (𝑅𝐻𝑆) ∈ V
24 resfunexg 6970 . . . 4 ((Fun 2nd ∧ (𝑅𝐻𝑆) ∈ V) → (2nd ↾ (𝑅𝐻𝑆)) ∈ V)
2510, 23, 24mp2an 690 . . 3 (2nd ↾ (𝑅𝐻𝑆)) ∈ V
2625a1i 11 . 2 (𝜑 → (2nd ↾ (𝑅𝐻𝑆)) ∈ V)
2716, 20, 21, 22, 26ovmpod 7294 1 (𝜑 → (𝑅(2nd𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1530   ∈ wcel 2107  Vcvv 3493  ⟨cop 4565   ↾ cres 5550  Fun wfun 6342  –onto→wfo 6346  ‘cfv 6348  (class class class)co 7148   ∈ cmpo 7150  2nd c2nd 7680  Basecbs 16475  Hom chom 16568  Catccat 16927   ×c cxpc 17410   2ndF c2ndf 17412 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-ndx 16478  df-slot 16479  df-base 16481  df-hom 16581  df-cco 16582  df-xpc 17414  df-2ndf 17416 This theorem is referenced by:  2ndfcl  17440  prf2nd  17447  1st2ndprf  17448  uncf2  17479  curf2ndf  17489  yonedalem22  17520
 Copyright terms: Public domain W3C validator