| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndf2 | Structured version Visualization version GIF version | ||
| Description: Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| 1stfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
| 1stfval.b | ⊢ 𝐵 = (Base‘𝑇) |
| 1stfval.h | ⊢ 𝐻 = (Hom ‘𝑇) |
| 1stfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 1stfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 2ndfval.p | ⊢ 𝑄 = (𝐶 2ndF 𝐷) |
| 2ndf1.p | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
| 2ndf2.p | ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| 2ndf2 | ⊢ (𝜑 → (𝑅(2nd ‘𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stfval.t | . . . 4 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
| 2 | 1stfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑇) | |
| 3 | 1stfval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝑇) | |
| 4 | 1stfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | 1stfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 6 | 2ndfval.p | . . . 4 ⊢ 𝑄 = (𝐶 2ndF 𝐷) | |
| 7 | 1, 2, 3, 4, 5, 6 | 2ndfval 18102 | . . 3 ⊢ (𝜑 → 𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉) |
| 8 | fo2nd 7948 | . . . . . 6 ⊢ 2nd :V–onto→V | |
| 9 | fofun 6741 | . . . . . 6 ⊢ (2nd :V–onto→V → Fun 2nd ) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ Fun 2nd |
| 11 | 2 | fvexi 6842 | . . . . 5 ⊢ 𝐵 ∈ V |
| 12 | resfunexg 7155 | . . . . 5 ⊢ ((Fun 2nd ∧ 𝐵 ∈ V) → (2nd ↾ 𝐵) ∈ V) | |
| 13 | 10, 11, 12 | mp2an 692 | . . . 4 ⊢ (2nd ↾ 𝐵) ∈ V |
| 14 | 11, 11 | mpoex 8017 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))) ∈ V |
| 15 | 13, 14 | op2ndd 7938 | . . 3 ⊢ (𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉 → (2nd ‘𝑄) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))) |
| 16 | 7, 15 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘𝑄) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))) |
| 17 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑥 = 𝑅) | |
| 18 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑦 = 𝑆) | |
| 19 | 17, 18 | oveq12d 7370 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝑥𝐻𝑦) = (𝑅𝐻𝑆)) |
| 20 | 19 | reseq2d 5932 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (2nd ↾ (𝑥𝐻𝑦)) = (2nd ↾ (𝑅𝐻𝑆))) |
| 21 | 2ndf1.p | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
| 22 | 2ndf2.p | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝐵) | |
| 23 | ovex 7385 | . . . 4 ⊢ (𝑅𝐻𝑆) ∈ V | |
| 24 | resfunexg 7155 | . . . 4 ⊢ ((Fun 2nd ∧ (𝑅𝐻𝑆) ∈ V) → (2nd ↾ (𝑅𝐻𝑆)) ∈ V) | |
| 25 | 10, 23, 24 | mp2an 692 | . . 3 ⊢ (2nd ↾ (𝑅𝐻𝑆)) ∈ V |
| 26 | 25 | a1i 11 | . 2 ⊢ (𝜑 → (2nd ↾ (𝑅𝐻𝑆)) ∈ V) |
| 27 | 16, 20, 21, 22, 26 | ovmpod 7504 | 1 ⊢ (𝜑 → (𝑅(2nd ‘𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cop 4581 ↾ cres 5621 Fun wfun 6480 –onto→wfo 6484 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 2nd c2nd 7926 Basecbs 17122 Hom chom 17174 Catccat 17572 ×c cxpc 18076 2ndF c2ndf 18078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-slot 17095 df-ndx 17107 df-base 17123 df-hom 17187 df-cco 17188 df-xpc 18080 df-2ndf 18082 |
| This theorem is referenced by: 2ndfcl 18106 prf2nd 18113 1st2ndprf 18114 uncf2 18145 curf2ndf 18155 yonedalem22 18186 |
| Copyright terms: Public domain | W3C validator |