| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndf2 | Structured version Visualization version GIF version | ||
| Description: Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| 1stfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
| 1stfval.b | ⊢ 𝐵 = (Base‘𝑇) |
| 1stfval.h | ⊢ 𝐻 = (Hom ‘𝑇) |
| 1stfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 1stfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 2ndfval.p | ⊢ 𝑄 = (𝐶 2ndF 𝐷) |
| 2ndf1.p | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
| 2ndf2.p | ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| 2ndf2 | ⊢ (𝜑 → (𝑅(2nd ‘𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stfval.t | . . . 4 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
| 2 | 1stfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑇) | |
| 3 | 1stfval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝑇) | |
| 4 | 1stfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | 1stfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 6 | 2ndfval.p | . . . 4 ⊢ 𝑄 = (𝐶 2ndF 𝐷) | |
| 7 | 1, 2, 3, 4, 5, 6 | 2ndfval 18155 | . . 3 ⊢ (𝜑 → 𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉) |
| 8 | fo2nd 7989 | . . . . . 6 ⊢ 2nd :V–onto→V | |
| 9 | fofun 6773 | . . . . . 6 ⊢ (2nd :V–onto→V → Fun 2nd ) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ Fun 2nd |
| 11 | 2 | fvexi 6872 | . . . . 5 ⊢ 𝐵 ∈ V |
| 12 | resfunexg 7189 | . . . . 5 ⊢ ((Fun 2nd ∧ 𝐵 ∈ V) → (2nd ↾ 𝐵) ∈ V) | |
| 13 | 10, 11, 12 | mp2an 692 | . . . 4 ⊢ (2nd ↾ 𝐵) ∈ V |
| 14 | 11, 11 | mpoex 8058 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))) ∈ V |
| 15 | 13, 14 | op2ndd 7979 | . . 3 ⊢ (𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉 → (2nd ‘𝑄) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))) |
| 16 | 7, 15 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘𝑄) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))) |
| 17 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑥 = 𝑅) | |
| 18 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑦 = 𝑆) | |
| 19 | 17, 18 | oveq12d 7405 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝑥𝐻𝑦) = (𝑅𝐻𝑆)) |
| 20 | 19 | reseq2d 5950 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (2nd ↾ (𝑥𝐻𝑦)) = (2nd ↾ (𝑅𝐻𝑆))) |
| 21 | 2ndf1.p | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
| 22 | 2ndf2.p | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝐵) | |
| 23 | ovex 7420 | . . . 4 ⊢ (𝑅𝐻𝑆) ∈ V | |
| 24 | resfunexg 7189 | . . . 4 ⊢ ((Fun 2nd ∧ (𝑅𝐻𝑆) ∈ V) → (2nd ↾ (𝑅𝐻𝑆)) ∈ V) | |
| 25 | 10, 23, 24 | mp2an 692 | . . 3 ⊢ (2nd ↾ (𝑅𝐻𝑆)) ∈ V |
| 26 | 25 | a1i 11 | . 2 ⊢ (𝜑 → (2nd ↾ (𝑅𝐻𝑆)) ∈ V) |
| 27 | 16, 20, 21, 22, 26 | ovmpod 7541 | 1 ⊢ (𝜑 → (𝑅(2nd ‘𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 ↾ cres 5640 Fun wfun 6505 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 2nd c2nd 7967 Basecbs 17179 Hom chom 17231 Catccat 17625 ×c cxpc 18129 2ndF c2ndf 18131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-slot 17152 df-ndx 17164 df-base 17180 df-hom 17244 df-cco 17245 df-xpc 18133 df-2ndf 18135 |
| This theorem is referenced by: 2ndfcl 18159 prf2nd 18166 1st2ndprf 18167 uncf2 18198 curf2ndf 18208 yonedalem22 18239 |
| Copyright terms: Public domain | W3C validator |