![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndf1 | Structured version Visualization version GIF version |
Description: Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
1stfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
1stfval.b | ⊢ 𝐵 = (Base‘𝑇) |
1stfval.h | ⊢ 𝐻 = (Hom ‘𝑇) |
1stfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
1stfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
2ndfval.p | ⊢ 𝑄 = (𝐶 2ndF 𝐷) |
2ndf1.p | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
Ref | Expression |
---|---|
2ndf1 | ⊢ (𝜑 → ((1st ‘𝑄)‘𝑅) = (2nd ‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stfval.t | . . . . 5 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | 1stfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑇) | |
3 | 1stfval.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝑇) | |
4 | 1stfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | 1stfval.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
6 | 2ndfval.p | . . . . 5 ⊢ 𝑄 = (𝐶 2ndF 𝐷) | |
7 | 1, 2, 3, 4, 5, 6 | 2ndfval 18087 | . . . 4 ⊢ (𝜑 → 𝑄 = ⟨(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩) |
8 | fo2nd 7943 | . . . . . . 7 ⊢ 2nd :V–onto→V | |
9 | fofun 6758 | . . . . . . 7 ⊢ (2nd :V–onto→V → Fun 2nd ) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ Fun 2nd |
11 | 2 | fvexi 6857 | . . . . . 6 ⊢ 𝐵 ∈ V |
12 | resfunexg 7166 | . . . . . 6 ⊢ ((Fun 2nd ∧ 𝐵 ∈ V) → (2nd ↾ 𝐵) ∈ V) | |
13 | 10, 11, 12 | mp2an 691 | . . . . 5 ⊢ (2nd ↾ 𝐵) ∈ V |
14 | 11, 11 | mpoex 8013 | . . . . 5 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))) ∈ V |
15 | 13, 14 | op1std 7932 | . . . 4 ⊢ (𝑄 = ⟨(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩ → (1st ‘𝑄) = (2nd ↾ 𝐵)) |
16 | 7, 15 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝑄) = (2nd ↾ 𝐵)) |
17 | 16 | fveq1d 6845 | . 2 ⊢ (𝜑 → ((1st ‘𝑄)‘𝑅) = ((2nd ↾ 𝐵)‘𝑅)) |
18 | 2ndf1.p | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
19 | 18 | fvresd 6863 | . 2 ⊢ (𝜑 → ((2nd ↾ 𝐵)‘𝑅) = (2nd ‘𝑅)) |
20 | 17, 19 | eqtrd 2773 | 1 ⊢ (𝜑 → ((1st ‘𝑄)‘𝑅) = (2nd ‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3444 ⟨cop 4593 ↾ cres 5636 Fun wfun 6491 –onto→wfo 6495 ‘cfv 6497 (class class class)co 7358 ∈ cmpo 7360 1st c1st 7920 2nd c2nd 7921 Basecbs 17088 Hom chom 17149 Catccat 17549 ×c cxpc 18061 2ndF c2ndf 18063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-3 12222 df-4 12223 df-5 12224 df-6 12225 df-7 12226 df-8 12227 df-9 12228 df-n0 12419 df-z 12505 df-dec 12624 df-slot 17059 df-ndx 17071 df-base 17089 df-hom 17162 df-cco 17163 df-xpc 18065 df-2ndf 18067 |
This theorem is referenced by: prf2nd 18098 1st2ndprf 18099 uncf1 18130 uncf2 18131 curf2ndf 18141 yonedalem21 18167 yonedalem22 18172 |
Copyright terms: Public domain | W3C validator |