| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndf1 | Structured version Visualization version GIF version | ||
| Description: Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| 1stfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
| 1stfval.b | ⊢ 𝐵 = (Base‘𝑇) |
| 1stfval.h | ⊢ 𝐻 = (Hom ‘𝑇) |
| 1stfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 1stfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 2ndfval.p | ⊢ 𝑄 = (𝐶 2ndF 𝐷) |
| 2ndf1.p | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| 2ndf1 | ⊢ (𝜑 → ((1st ‘𝑄)‘𝑅) = (2nd ‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stfval.t | . . . . 5 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
| 2 | 1stfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑇) | |
| 3 | 1stfval.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝑇) | |
| 4 | 1stfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | 1stfval.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 6 | 2ndfval.p | . . . . 5 ⊢ 𝑄 = (𝐶 2ndF 𝐷) | |
| 7 | 1, 2, 3, 4, 5, 6 | 2ndfval 18097 | . . . 4 ⊢ (𝜑 → 𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉) |
| 8 | fo2nd 7942 | . . . . . . 7 ⊢ 2nd :V–onto→V | |
| 9 | fofun 6736 | . . . . . . 7 ⊢ (2nd :V–onto→V → Fun 2nd ) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ Fun 2nd |
| 11 | 2 | fvexi 6836 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 12 | resfunexg 7149 | . . . . . 6 ⊢ ((Fun 2nd ∧ 𝐵 ∈ V) → (2nd ↾ 𝐵) ∈ V) | |
| 13 | 10, 11, 12 | mp2an 692 | . . . . 5 ⊢ (2nd ↾ 𝐵) ∈ V |
| 14 | 11, 11 | mpoex 8011 | . . . . 5 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))) ∈ V |
| 15 | 13, 14 | op1std 7931 | . . . 4 ⊢ (𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉 → (1st ‘𝑄) = (2nd ↾ 𝐵)) |
| 16 | 7, 15 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝑄) = (2nd ↾ 𝐵)) |
| 17 | 16 | fveq1d 6824 | . 2 ⊢ (𝜑 → ((1st ‘𝑄)‘𝑅) = ((2nd ↾ 𝐵)‘𝑅)) |
| 18 | 2ndf1.p | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
| 19 | 18 | fvresd 6842 | . 2 ⊢ (𝜑 → ((2nd ↾ 𝐵)‘𝑅) = (2nd ‘𝑅)) |
| 20 | 17, 19 | eqtrd 2766 | 1 ⊢ (𝜑 → ((1st ‘𝑄)‘𝑅) = (2nd ‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4582 ↾ cres 5618 Fun wfun 6475 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 Basecbs 17117 Hom chom 17169 Catccat 17567 ×c cxpc 18071 2ndF c2ndf 18073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-slot 17090 df-ndx 17102 df-base 17118 df-hom 17182 df-cco 17183 df-xpc 18075 df-2ndf 18077 |
| This theorem is referenced by: prf2nd 18108 1st2ndprf 18109 uncf1 18139 uncf2 18140 curf2ndf 18150 yonedalem21 18176 yonedalem22 18181 |
| Copyright terms: Public domain | W3C validator |