MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stf1 Structured version   Visualization version   GIF version

Theorem 1stf1 17907
Description: Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfval.t 𝑇 = (𝐶 ×c 𝐷)
1stfval.b 𝐵 = (Base‘𝑇)
1stfval.h 𝐻 = (Hom ‘𝑇)
1stfval.c (𝜑𝐶 ∈ Cat)
1stfval.d (𝜑𝐷 ∈ Cat)
1stfval.p 𝑃 = (𝐶 1stF 𝐷)
1stf1.p (𝜑𝑅𝐵)
Assertion
Ref Expression
1stf1 (𝜑 → ((1st𝑃)‘𝑅) = (1st𝑅))

Proof of Theorem 1stf1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfval.t . . . . 5 𝑇 = (𝐶 ×c 𝐷)
2 1stfval.b . . . . 5 𝐵 = (Base‘𝑇)
3 1stfval.h . . . . 5 𝐻 = (Hom ‘𝑇)
4 1stfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
5 1stfval.d . . . . 5 (𝜑𝐷 ∈ Cat)
6 1stfval.p . . . . 5 𝑃 = (𝐶 1stF 𝐷)
71, 2, 3, 4, 5, 61stfval 17906 . . . 4 (𝜑𝑃 = ⟨(1st𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))⟩)
8 fo1st 7851 . . . . . . 7 1st :V–onto→V
9 fofun 6691 . . . . . . 7 (1st :V–onto→V → Fun 1st )
108, 9ax-mp 5 . . . . . 6 Fun 1st
112fvexi 6790 . . . . . 6 𝐵 ∈ V
12 resfunexg 7093 . . . . . 6 ((Fun 1st𝐵 ∈ V) → (1st𝐵) ∈ V)
1310, 11, 12mp2an 689 . . . . 5 (1st𝐵) ∈ V
1411, 11mpoex 7920 . . . . 5 (𝑥𝐵, 𝑦𝐵 ↦ (1st ↾ (𝑥𝐻𝑦))) ∈ V
1513, 14op1std 7841 . . . 4 (𝑃 = ⟨(1st𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))⟩ → (1st𝑃) = (1st𝐵))
167, 15syl 17 . . 3 (𝜑 → (1st𝑃) = (1st𝐵))
1716fveq1d 6778 . 2 (𝜑 → ((1st𝑃)‘𝑅) = ((1st𝐵)‘𝑅))
18 1stf1.p . . 3 (𝜑𝑅𝐵)
1918fvresd 6796 . 2 (𝜑 → ((1st𝐵)‘𝑅) = (1st𝑅))
2017, 19eqtrd 2778 1 (𝜑 → ((1st𝑃)‘𝑅) = (1st𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3431  cop 4569  cres 5593  Fun wfun 6429  ontowfo 6433  cfv 6435  (class class class)co 7277  cmpo 7279  1st c1st 7829  Basecbs 16910  Hom chom 16971  Catccat 17371   ×c cxpc 17883   1stF c1stf 17884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-er 8496  df-en 8732  df-dom 8733  df-sdom 8734  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12436  df-slot 16881  df-ndx 16893  df-base 16911  df-hom 16984  df-cco 16985  df-xpc 17887  df-1stf 17888
This theorem is referenced by:  prf1st  17919  1st2ndprf  17921  uncf1  17952  uncf2  17953  diag11  17959  yonedalem21  17989  yonedalem22  17994
  Copyright terms: Public domain W3C validator