![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stf1 | Structured version Visualization version GIF version |
Description: Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
1stfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
1stfval.b | ⊢ 𝐵 = (Base‘𝑇) |
1stfval.h | ⊢ 𝐻 = (Hom ‘𝑇) |
1stfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
1stfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
1stfval.p | ⊢ 𝑃 = (𝐶 1stF 𝐷) |
1stf1.p | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
Ref | Expression |
---|---|
1stf1 | ⊢ (𝜑 → ((1st ‘𝑃)‘𝑅) = (1st ‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stfval.t | . . . . 5 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | 1stfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑇) | |
3 | 1stfval.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝑇) | |
4 | 1stfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | 1stfval.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
6 | 1stfval.p | . . . . 5 ⊢ 𝑃 = (𝐶 1stF 𝐷) | |
7 | 1, 2, 3, 4, 5, 6 | 1stfval 17312 | . . . 4 ⊢ (𝜑 → 𝑃 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
8 | fo1st 7520 | . . . . . . 7 ⊢ 1st :V–onto→V | |
9 | fofun 6418 | . . . . . . 7 ⊢ (1st :V–onto→V → Fun 1st ) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ Fun 1st |
11 | 2 | fvexi 6511 | . . . . . 6 ⊢ 𝐵 ∈ V |
12 | resfunexg 6803 | . . . . . 6 ⊢ ((Fun 1st ∧ 𝐵 ∈ V) → (1st ↾ 𝐵) ∈ V) | |
13 | 10, 11, 12 | mp2an 680 | . . . . 5 ⊢ (1st ↾ 𝐵) ∈ V |
14 | 11, 11 | mpoex 7584 | . . . . 5 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦))) ∈ V |
15 | 13, 14 | op1std 7510 | . . . 4 ⊢ (𝑃 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉 → (1st ‘𝑃) = (1st ↾ 𝐵)) |
16 | 7, 15 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝑃) = (1st ↾ 𝐵)) |
17 | 16 | fveq1d 6499 | . 2 ⊢ (𝜑 → ((1st ‘𝑃)‘𝑅) = ((1st ↾ 𝐵)‘𝑅)) |
18 | 1stf1.p | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
19 | 18 | fvresd 6517 | . 2 ⊢ (𝜑 → ((1st ↾ 𝐵)‘𝑅) = (1st ‘𝑅)) |
20 | 17, 19 | eqtrd 2809 | 1 ⊢ (𝜑 → ((1st ‘𝑃)‘𝑅) = (1st ‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 Vcvv 3410 〈cop 4442 ↾ cres 5406 Fun wfun 6180 –onto→wfo 6184 ‘cfv 6186 (class class class)co 6975 ∈ cmpo 6977 1st c1st 7498 Basecbs 16338 Hom chom 16431 Catccat 16806 ×c cxpc 17289 1stF c1stf 17290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-er 8088 df-en 8306 df-dom 8307 df-sdom 8308 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-nn 11439 df-2 11502 df-3 11503 df-4 11504 df-5 11505 df-6 11506 df-7 11507 df-8 11508 df-9 11509 df-n0 11707 df-z 11793 df-dec 11911 df-ndx 16341 df-slot 16342 df-base 16344 df-hom 16444 df-cco 16445 df-xpc 17293 df-1stf 17294 |
This theorem is referenced by: prf1st 17325 1st2ndprf 17327 uncf1 17357 uncf2 17358 diag11 17364 yonedalem21 17394 yonedalem22 17399 |
Copyright terms: Public domain | W3C validator |