Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1stf1 | Structured version Visualization version GIF version |
Description: Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
1stfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
1stfval.b | ⊢ 𝐵 = (Base‘𝑇) |
1stfval.h | ⊢ 𝐻 = (Hom ‘𝑇) |
1stfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
1stfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
1stfval.p | ⊢ 𝑃 = (𝐶 1stF 𝐷) |
1stf1.p | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
Ref | Expression |
---|---|
1stf1 | ⊢ (𝜑 → ((1st ‘𝑃)‘𝑅) = (1st ‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stfval.t | . . . . 5 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | 1stfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑇) | |
3 | 1stfval.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝑇) | |
4 | 1stfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | 1stfval.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
6 | 1stfval.p | . . . . 5 ⊢ 𝑃 = (𝐶 1stF 𝐷) | |
7 | 1, 2, 3, 4, 5, 6 | 1stfval 17906 | . . . 4 ⊢ (𝜑 → 𝑃 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
8 | fo1st 7851 | . . . . . . 7 ⊢ 1st :V–onto→V | |
9 | fofun 6691 | . . . . . . 7 ⊢ (1st :V–onto→V → Fun 1st ) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ Fun 1st |
11 | 2 | fvexi 6790 | . . . . . 6 ⊢ 𝐵 ∈ V |
12 | resfunexg 7093 | . . . . . 6 ⊢ ((Fun 1st ∧ 𝐵 ∈ V) → (1st ↾ 𝐵) ∈ V) | |
13 | 10, 11, 12 | mp2an 689 | . . . . 5 ⊢ (1st ↾ 𝐵) ∈ V |
14 | 11, 11 | mpoex 7920 | . . . . 5 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦))) ∈ V |
15 | 13, 14 | op1std 7841 | . . . 4 ⊢ (𝑃 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉 → (1st ‘𝑃) = (1st ↾ 𝐵)) |
16 | 7, 15 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝑃) = (1st ↾ 𝐵)) |
17 | 16 | fveq1d 6778 | . 2 ⊢ (𝜑 → ((1st ‘𝑃)‘𝑅) = ((1st ↾ 𝐵)‘𝑅)) |
18 | 1stf1.p | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
19 | 18 | fvresd 6796 | . 2 ⊢ (𝜑 → ((1st ↾ 𝐵)‘𝑅) = (1st ‘𝑅)) |
20 | 17, 19 | eqtrd 2778 | 1 ⊢ (𝜑 → ((1st ‘𝑃)‘𝑅) = (1st ‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3431 〈cop 4569 ↾ cres 5593 Fun wfun 6429 –onto→wfo 6433 ‘cfv 6435 (class class class)co 7277 ∈ cmpo 7279 1st c1st 7829 Basecbs 16910 Hom chom 16971 Catccat 17371 ×c cxpc 17883 1stF c1stf 17884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-er 8496 df-en 8732 df-dom 8733 df-sdom 8734 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-7 12039 df-8 12040 df-9 12041 df-n0 12232 df-z 12318 df-dec 12436 df-slot 16881 df-ndx 16893 df-base 16911 df-hom 16984 df-cco 16985 df-xpc 17887 df-1stf 17888 |
This theorem is referenced by: prf1st 17919 1st2ndprf 17921 uncf1 17952 uncf2 17953 diag11 17959 yonedalem21 17989 yonedalem22 17994 |
Copyright terms: Public domain | W3C validator |