| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayfun | Structured version Visualization version GIF version | ||
| Description: The birthday function is a function. (Contributed by Scott Fenton, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| bdayfun | ⊢ Fun bday |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27641 | . 2 ⊢ bday : No –onto→On | |
| 2 | fofun 6791 | . 2 ⊢ ( bday : No –onto→On → Fun bday ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Fun bday |
| Colors of variables: wff setvar class |
| Syntax hints: Oncon0 6352 Fun wfun 6525 –onto→wfo 6529 No csur 27603 bday cbday 27605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-suc 6358 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-1o 8480 df-no 27606 df-bday 27608 |
| This theorem is referenced by: nocvxminlem 27741 nocvxmin 27742 etasslt2 27778 scutbdaybnd2lim 27781 madebdayim 27851 lrrecfr 27902 addsbdaylem 27975 negsbdaylem 28014 onscutlt 28217 onsiso 28221 bdayon 28225 bdayn0sf1o 28311 |
| Copyright terms: Public domain | W3C validator |