| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayfun | Structured version Visualization version GIF version | ||
| Description: The birthday function is a function. (Contributed by Scott Fenton, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| bdayfun | ⊢ Fun bday |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27565 | . 2 ⊢ bday : No –onto→On | |
| 2 | fofun 6755 | . 2 ⊢ ( bday : No –onto→On → Fun bday ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Fun bday |
| Colors of variables: wff setvar class |
| Syntax hints: Oncon0 6320 Fun wfun 6493 –onto→wfo 6497 No csur 27527 bday cbday 27529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-suc 6326 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-1o 8411 df-no 27530 df-bday 27532 |
| This theorem is referenced by: nocvxminlem 27665 nocvxmin 27666 etasslt2 27702 scutbdaybnd2lim 27705 madebdayim 27775 lrrecfr 27826 addsbdaylem 27899 negsbdaylem 27938 onscutlt 28141 onsiso 28145 bdayon 28149 bdayn0sf1o 28235 |
| Copyright terms: Public domain | W3C validator |