MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stfcl Structured version   Visualization version   GIF version

Theorem 1stfcl 18209
Description: The first projection functor is a functor onto the left argument. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfcl.t 𝑇 = (𝐶 ×c 𝐷)
1stfcl.c (𝜑𝐶 ∈ Cat)
1stfcl.d (𝜑𝐷 ∈ Cat)
1stfcl.p 𝑃 = (𝐶 1stF 𝐷)
Assertion
Ref Expression
1stfcl (𝜑𝑃 ∈ (𝑇 Func 𝐶))

Proof of Theorem 1stfcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfcl.t . . . 4 𝑇 = (𝐶 ×c 𝐷)
2 eqid 2735 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2735 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
41, 2, 3xpcbas 18190 . . . 4 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑇)
5 eqid 2735 . . . 4 (Hom ‘𝑇) = (Hom ‘𝑇)
6 1stfcl.c . . . 4 (𝜑𝐶 ∈ Cat)
7 1stfcl.d . . . 4 (𝜑𝐷 ∈ Cat)
8 1stfcl.p . . . 4 𝑃 = (𝐶 1stF 𝐷)
91, 4, 5, 6, 7, 81stfval 18203 . . 3 (𝜑𝑃 = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))⟩)
10 fo1st 8008 . . . . . . . 8 1st :V–onto→V
11 fofun 6791 . . . . . . . 8 (1st :V–onto→V → Fun 1st )
1210, 11ax-mp 5 . . . . . . 7 Fun 1st
13 fvex 6889 . . . . . . . 8 (Base‘𝐶) ∈ V
14 fvex 6889 . . . . . . . 8 (Base‘𝐷) ∈ V
1513, 14xpex 7747 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐷)) ∈ V
16 resfunexg 7207 . . . . . . 7 ((Fun 1st ∧ ((Base‘𝐶) × (Base‘𝐷)) ∈ V) → (1st ↾ ((Base‘𝐶) × (Base‘𝐷))) ∈ V)
1712, 15, 16mp2an 692 . . . . . 6 (1st ↾ ((Base‘𝐶) × (Base‘𝐷))) ∈ V
1815, 15mpoex 8078 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))) ∈ V
1917, 18op2ndd 7999 . . . . 5 (𝑃 = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))⟩ → (2nd𝑃) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))))
209, 19syl 17 . . . 4 (𝜑 → (2nd𝑃) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))))
2120opeq2d 4856 . . 3 (𝜑 → ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑃)⟩ = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))⟩)
229, 21eqtr4d 2773 . 2 (𝜑𝑃 = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑃)⟩)
23 eqid 2735 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
24 eqid 2735 . . . 4 (Id‘𝑇) = (Id‘𝑇)
25 eqid 2735 . . . 4 (Id‘𝐶) = (Id‘𝐶)
26 eqid 2735 . . . 4 (comp‘𝑇) = (comp‘𝑇)
27 eqid 2735 . . . 4 (comp‘𝐶) = (comp‘𝐶)
281, 6, 7xpccat 18202 . . . 4 (𝜑𝑇 ∈ Cat)
29 f1stres 8012 . . . . 5 (1st ↾ ((Base‘𝐶) × (Base‘𝐷))):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐶)
3029a1i 11 . . . 4 (𝜑 → (1st ↾ ((Base‘𝐶) × (Base‘𝐷))):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐶))
31 eqid 2735 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))
32 ovex 7438 . . . . . . 7 (𝑥(Hom ‘𝑇)𝑦) ∈ V
33 resfunexg 7207 . . . . . . 7 ((Fun 1st ∧ (𝑥(Hom ‘𝑇)𝑦) ∈ V) → (1st ↾ (𝑥(Hom ‘𝑇)𝑦)) ∈ V)
3412, 32, 33mp2an 692 . . . . . 6 (1st ↾ (𝑥(Hom ‘𝑇)𝑦)) ∈ V
3531, 34fnmpoi 8069 . . . . 5 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷)))
3620fneq1d 6631 . . . . 5 (𝜑 → ((2nd𝑃) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))) ↔ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷)))))
3735, 36mpbiri 258 . . . 4 (𝜑 → (2nd𝑃) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))))
38 f1stres 8012 . . . . . 6 (1st ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((1st𝑥)(Hom ‘𝐶)(1st𝑦))
396adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝐶 ∈ Cat)
407adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝐷 ∈ Cat)
41 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
42 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))
431, 4, 5, 39, 40, 8, 41, 421stf2 18205 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑃)𝑦) = (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))
44 eqid 2735 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
451, 4, 23, 44, 5, 41, 42xpchom 18192 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(Hom ‘𝑇)𝑦) = (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))))
4645reseq2d 5966 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (1st ↾ (𝑥(Hom ‘𝑇)𝑦)) = (1st ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))))
4743, 46eqtrd 2770 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑃)𝑦) = (1st ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))))
4847feq1d 6690 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((𝑥(2nd𝑃)𝑦):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((1st𝑥)(Hom ‘𝐶)(1st𝑦)) ↔ (1st ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((1st𝑥)(Hom ‘𝐶)(1st𝑦))))
4938, 48mpbiri 258 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑃)𝑦):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((1st𝑥)(Hom ‘𝐶)(1st𝑦)))
50 fvres 6895 . . . . . . . 8 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (1st𝑥))
5150ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (1st𝑥))
52 fvres 6895 . . . . . . . 8 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦) = (1st𝑦))
5352ad2antll 729 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦) = (1st𝑦))
5451, 53oveq12d 7423 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)(Hom ‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)) = ((1st𝑥)(Hom ‘𝐶)(1st𝑦)))
5545, 54feq23d 6701 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶(((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)(Hom ‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)) ↔ (𝑥(2nd𝑃)𝑦):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((1st𝑥)(Hom ‘𝐶)(1st𝑦))))
5649, 55mpbird 257 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶(((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)(Hom ‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)))
5728adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑇 ∈ Cat)
58 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
594, 5, 24, 57, 58catidcl 17694 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘𝑥) ∈ (𝑥(Hom ‘𝑇)𝑥))
6059fvresd 6896 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((1st ↾ (𝑥(Hom ‘𝑇)𝑥))‘((Id‘𝑇)‘𝑥)) = (1st ‘((Id‘𝑇)‘𝑥)))
61 1st2nd2 8027 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6261adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6362fveq2d 6880 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘𝑥) = ((Id‘𝑇)‘⟨(1st𝑥), (2nd𝑥)⟩))
646adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝐶 ∈ Cat)
657adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝐷 ∈ Cat)
66 eqid 2735 . . . . . . . . 9 (Id‘𝐷) = (Id‘𝐷)
67 xp1st 8020 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st𝑥) ∈ (Base‘𝐶))
6867adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (1st𝑥) ∈ (Base‘𝐶))
69 xp2nd 8021 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd𝑥) ∈ (Base‘𝐷))
7069adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (2nd𝑥) ∈ (Base‘𝐷))
711, 64, 65, 2, 3, 25, 66, 24, 68, 70xpcid 18201 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘⟨(1st𝑥), (2nd𝑥)⟩) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐷)‘(2nd𝑥))⟩)
7263, 71eqtrd 2770 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘𝑥) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐷)‘(2nd𝑥))⟩)
73 fvex 6889 . . . . . . . 8 ((Id‘𝐶)‘(1st𝑥)) ∈ V
74 fvex 6889 . . . . . . . 8 ((Id‘𝐷)‘(2nd𝑥)) ∈ V
7573, 74op1std 7998 . . . . . . 7 (((Id‘𝑇)‘𝑥) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐷)‘(2nd𝑥))⟩ → (1st ‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
7672, 75syl 17 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (1st ‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
7760, 76eqtrd 2770 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((1st ↾ (𝑥(Hom ‘𝑇)𝑥))‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
781, 4, 5, 64, 65, 8, 58, 581stf2 18205 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑥(2nd𝑃)𝑥) = (1st ↾ (𝑥(Hom ‘𝑇)𝑥)))
7978fveq1d 6878 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((𝑥(2nd𝑃)𝑥)‘((Id‘𝑇)‘𝑥)) = ((1st ↾ (𝑥(Hom ‘𝑇)𝑥))‘((Id‘𝑇)‘𝑥)))
8050adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (1st𝑥))
8180fveq2d 6880 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝐶)‘((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
8277, 79, 813eqtr4d 2780 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((𝑥(2nd𝑃)𝑥)‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐶)‘((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)))
83283ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑇 ∈ Cat)
84 simp21 1207 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
85 simp22 1208 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))
86 simp23 1209 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷)))
87 simp3l 1202 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦))
88 simp3r 1203 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))
894, 5, 26, 83, 84, 85, 86, 87, 88catcocl 17697 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓) ∈ (𝑥(Hom ‘𝑇)𝑧))
9089fvresd 6896 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ (𝑥(Hom ‘𝑇)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = (1st ‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)))
911, 4, 5, 26, 84, 85, 86, 87, 88, 27xpcco1st 18196 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (1st ‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = ((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝐶)(1st𝑧))(1st𝑓)))
9290, 91eqtrd 2770 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ (𝑥(Hom ‘𝑇)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = ((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝐶)(1st𝑧))(1st𝑓)))
9363ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝐶 ∈ Cat)
9473ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝐷 ∈ Cat)
951, 4, 5, 93, 94, 8, 84, 861stf2 18205 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑥(2nd𝑃)𝑧) = (1st ↾ (𝑥(Hom ‘𝑇)𝑧)))
9695fveq1d 6878 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑃)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = ((1st ↾ (𝑥(Hom ‘𝑇)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)))
9784fvresd 6896 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (1st𝑥))
9885fvresd 6896 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦) = (1st𝑦))
9997, 98opeq12d 4857 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ⟨((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩ = ⟨(1st𝑥), (1st𝑦)⟩)
10086fvresd 6896 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧) = (1st𝑧))
10199, 100oveq12d 7423 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (⟨((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩(comp‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧)) = (⟨(1st𝑥), (1st𝑦)⟩(comp‘𝐶)(1st𝑧)))
1021, 4, 5, 93, 94, 8, 85, 861stf2 18205 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑦(2nd𝑃)𝑧) = (1st ↾ (𝑦(Hom ‘𝑇)𝑧)))
103102fveq1d 6878 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑦(2nd𝑃)𝑧)‘𝑔) = ((1st ↾ (𝑦(Hom ‘𝑇)𝑧))‘𝑔))
10488fvresd 6896 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ (𝑦(Hom ‘𝑇)𝑧))‘𝑔) = (1st𝑔))
105103, 104eqtrd 2770 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑦(2nd𝑃)𝑧)‘𝑔) = (1st𝑔))
1061, 4, 5, 93, 94, 8, 84, 851stf2 18205 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑥(2nd𝑃)𝑦) = (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))
107106fveq1d 6878 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑃)𝑦)‘𝑓) = ((1st ↾ (𝑥(Hom ‘𝑇)𝑦))‘𝑓))
10887fvresd 6896 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ (𝑥(Hom ‘𝑇)𝑦))‘𝑓) = (1st𝑓))
109107, 108eqtrd 2770 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑃)𝑦)‘𝑓) = (1st𝑓))
110101, 105, 109oveq123d 7426 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (((𝑦(2nd𝑃)𝑧)‘𝑔)(⟨((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩(comp‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧))((𝑥(2nd𝑃)𝑦)‘𝑓)) = ((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝐶)(1st𝑧))(1st𝑓)))
11192, 96, 1103eqtr4d 2780 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑃)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = (((𝑦(2nd𝑃)𝑧)‘𝑔)(⟨((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩(comp‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧))((𝑥(2nd𝑃)𝑦)‘𝑓)))
1124, 2, 5, 23, 24, 25, 26, 27, 28, 6, 30, 37, 56, 82, 111isfuncd 17878 . . 3 (𝜑 → (1st ↾ ((Base‘𝐶) × (Base‘𝐷)))(𝑇 Func 𝐶)(2nd𝑃))
113 df-br 5120 . . 3 ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))(𝑇 Func 𝐶)(2nd𝑃) ↔ ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑃)⟩ ∈ (𝑇 Func 𝐶))
114112, 113sylib 218 . 2 (𝜑 → ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑃)⟩ ∈ (𝑇 Func 𝐶))
11522, 114eqeltrd 2834 1 (𝜑𝑃 ∈ (𝑇 Func 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cop 4607   class class class wbr 5119   × cxp 5652  cres 5656  Fun wfun 6525   Fn wfn 6526  wf 6527  ontowfo 6529  cfv 6531  (class class class)co 7405  cmpo 7407  1st c1st 7986  2nd c2nd 7987  Basecbs 17228  Hom chom 17282  compcco 17283  Catccat 17676  Idccid 17677   Func cfunc 17867   ×c cxpc 18180   1stF c1stf 18181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-hom 17295  df-cco 17296  df-cat 17680  df-cid 17681  df-func 17871  df-xpc 18184  df-1stf 18185
This theorem is referenced by:  prf1st  18216  1st2ndprf  18218  uncfcl  18247  uncf1  18248  uncf2  18249  diagcl  18253  diag11  18255  diag12  18256  diag2  18257  yonedalem1  18284  yonedalem21  18285  yonedalem22  18290
  Copyright terms: Public domain W3C validator