MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stfcl Structured version   Visualization version   GIF version

Theorem 1stfcl 18165
Description: The first projection functor is a functor onto the left argument. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfcl.t 𝑇 = (𝐶 ×c 𝐷)
1stfcl.c (𝜑𝐶 ∈ Cat)
1stfcl.d (𝜑𝐷 ∈ Cat)
1stfcl.p 𝑃 = (𝐶 1stF 𝐷)
Assertion
Ref Expression
1stfcl (𝜑𝑃 ∈ (𝑇 Func 𝐶))

Proof of Theorem 1stfcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfcl.t . . . 4 𝑇 = (𝐶 ×c 𝐷)
2 eqid 2730 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2730 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
41, 2, 3xpcbas 18146 . . . 4 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑇)
5 eqid 2730 . . . 4 (Hom ‘𝑇) = (Hom ‘𝑇)
6 1stfcl.c . . . 4 (𝜑𝐶 ∈ Cat)
7 1stfcl.d . . . 4 (𝜑𝐷 ∈ Cat)
8 1stfcl.p . . . 4 𝑃 = (𝐶 1stF 𝐷)
91, 4, 5, 6, 7, 81stfval 18159 . . 3 (𝜑𝑃 = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))⟩)
10 fo1st 7991 . . . . . . . 8 1st :V–onto→V
11 fofun 6776 . . . . . . . 8 (1st :V–onto→V → Fun 1st )
1210, 11ax-mp 5 . . . . . . 7 Fun 1st
13 fvex 6874 . . . . . . . 8 (Base‘𝐶) ∈ V
14 fvex 6874 . . . . . . . 8 (Base‘𝐷) ∈ V
1513, 14xpex 7732 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐷)) ∈ V
16 resfunexg 7192 . . . . . . 7 ((Fun 1st ∧ ((Base‘𝐶) × (Base‘𝐷)) ∈ V) → (1st ↾ ((Base‘𝐶) × (Base‘𝐷))) ∈ V)
1712, 15, 16mp2an 692 . . . . . 6 (1st ↾ ((Base‘𝐶) × (Base‘𝐷))) ∈ V
1815, 15mpoex 8061 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))) ∈ V
1917, 18op2ndd 7982 . . . . 5 (𝑃 = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))⟩ → (2nd𝑃) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))))
209, 19syl 17 . . . 4 (𝜑 → (2nd𝑃) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))))
2120opeq2d 4847 . . 3 (𝜑 → ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑃)⟩ = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))⟩)
229, 21eqtr4d 2768 . 2 (𝜑𝑃 = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑃)⟩)
23 eqid 2730 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
24 eqid 2730 . . . 4 (Id‘𝑇) = (Id‘𝑇)
25 eqid 2730 . . . 4 (Id‘𝐶) = (Id‘𝐶)
26 eqid 2730 . . . 4 (comp‘𝑇) = (comp‘𝑇)
27 eqid 2730 . . . 4 (comp‘𝐶) = (comp‘𝐶)
281, 6, 7xpccat 18158 . . . 4 (𝜑𝑇 ∈ Cat)
29 f1stres 7995 . . . . 5 (1st ↾ ((Base‘𝐶) × (Base‘𝐷))):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐶)
3029a1i 11 . . . 4 (𝜑 → (1st ↾ ((Base‘𝐶) × (Base‘𝐷))):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐶))
31 eqid 2730 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))
32 ovex 7423 . . . . . . 7 (𝑥(Hom ‘𝑇)𝑦) ∈ V
33 resfunexg 7192 . . . . . . 7 ((Fun 1st ∧ (𝑥(Hom ‘𝑇)𝑦) ∈ V) → (1st ↾ (𝑥(Hom ‘𝑇)𝑦)) ∈ V)
3412, 32, 33mp2an 692 . . . . . 6 (1st ↾ (𝑥(Hom ‘𝑇)𝑦)) ∈ V
3531, 34fnmpoi 8052 . . . . 5 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷)))
3620fneq1d 6614 . . . . 5 (𝜑 → ((2nd𝑃) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))) ↔ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷)))))
3735, 36mpbiri 258 . . . 4 (𝜑 → (2nd𝑃) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))))
38 f1stres 7995 . . . . . 6 (1st ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((1st𝑥)(Hom ‘𝐶)(1st𝑦))
396adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝐶 ∈ Cat)
407adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝐷 ∈ Cat)
41 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
42 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))
431, 4, 5, 39, 40, 8, 41, 421stf2 18161 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑃)𝑦) = (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))
44 eqid 2730 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
451, 4, 23, 44, 5, 41, 42xpchom 18148 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(Hom ‘𝑇)𝑦) = (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))))
4645reseq2d 5953 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (1st ↾ (𝑥(Hom ‘𝑇)𝑦)) = (1st ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))))
4743, 46eqtrd 2765 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑃)𝑦) = (1st ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))))
4847feq1d 6673 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((𝑥(2nd𝑃)𝑦):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((1st𝑥)(Hom ‘𝐶)(1st𝑦)) ↔ (1st ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((1st𝑥)(Hom ‘𝐶)(1st𝑦))))
4938, 48mpbiri 258 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑃)𝑦):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((1st𝑥)(Hom ‘𝐶)(1st𝑦)))
50 fvres 6880 . . . . . . . 8 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (1st𝑥))
5150ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (1st𝑥))
52 fvres 6880 . . . . . . . 8 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦) = (1st𝑦))
5352ad2antll 729 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦) = (1st𝑦))
5451, 53oveq12d 7408 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)(Hom ‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)) = ((1st𝑥)(Hom ‘𝐶)(1st𝑦)))
5545, 54feq23d 6686 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶(((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)(Hom ‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)) ↔ (𝑥(2nd𝑃)𝑦):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((1st𝑥)(Hom ‘𝐶)(1st𝑦))))
5649, 55mpbird 257 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶(((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)(Hom ‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)))
5728adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑇 ∈ Cat)
58 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
594, 5, 24, 57, 58catidcl 17650 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘𝑥) ∈ (𝑥(Hom ‘𝑇)𝑥))
6059fvresd 6881 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((1st ↾ (𝑥(Hom ‘𝑇)𝑥))‘((Id‘𝑇)‘𝑥)) = (1st ‘((Id‘𝑇)‘𝑥)))
61 1st2nd2 8010 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6261adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6362fveq2d 6865 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘𝑥) = ((Id‘𝑇)‘⟨(1st𝑥), (2nd𝑥)⟩))
646adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝐶 ∈ Cat)
657adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝐷 ∈ Cat)
66 eqid 2730 . . . . . . . . 9 (Id‘𝐷) = (Id‘𝐷)
67 xp1st 8003 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st𝑥) ∈ (Base‘𝐶))
6867adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (1st𝑥) ∈ (Base‘𝐶))
69 xp2nd 8004 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd𝑥) ∈ (Base‘𝐷))
7069adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (2nd𝑥) ∈ (Base‘𝐷))
711, 64, 65, 2, 3, 25, 66, 24, 68, 70xpcid 18157 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘⟨(1st𝑥), (2nd𝑥)⟩) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐷)‘(2nd𝑥))⟩)
7263, 71eqtrd 2765 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘𝑥) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐷)‘(2nd𝑥))⟩)
73 fvex 6874 . . . . . . . 8 ((Id‘𝐶)‘(1st𝑥)) ∈ V
74 fvex 6874 . . . . . . . 8 ((Id‘𝐷)‘(2nd𝑥)) ∈ V
7573, 74op1std 7981 . . . . . . 7 (((Id‘𝑇)‘𝑥) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐷)‘(2nd𝑥))⟩ → (1st ‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
7672, 75syl 17 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (1st ‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
7760, 76eqtrd 2765 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((1st ↾ (𝑥(Hom ‘𝑇)𝑥))‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
781, 4, 5, 64, 65, 8, 58, 581stf2 18161 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑥(2nd𝑃)𝑥) = (1st ↾ (𝑥(Hom ‘𝑇)𝑥)))
7978fveq1d 6863 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((𝑥(2nd𝑃)𝑥)‘((Id‘𝑇)‘𝑥)) = ((1st ↾ (𝑥(Hom ‘𝑇)𝑥))‘((Id‘𝑇)‘𝑥)))
8050adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (1st𝑥))
8180fveq2d 6865 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝐶)‘((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
8277, 79, 813eqtr4d 2775 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((𝑥(2nd𝑃)𝑥)‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐶)‘((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)))
83283ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑇 ∈ Cat)
84 simp21 1207 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
85 simp22 1208 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))
86 simp23 1209 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷)))
87 simp3l 1202 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦))
88 simp3r 1203 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))
894, 5, 26, 83, 84, 85, 86, 87, 88catcocl 17653 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓) ∈ (𝑥(Hom ‘𝑇)𝑧))
9089fvresd 6881 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ (𝑥(Hom ‘𝑇)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = (1st ‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)))
911, 4, 5, 26, 84, 85, 86, 87, 88, 27xpcco1st 18152 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (1st ‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = ((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝐶)(1st𝑧))(1st𝑓)))
9290, 91eqtrd 2765 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ (𝑥(Hom ‘𝑇)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = ((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝐶)(1st𝑧))(1st𝑓)))
9363ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝐶 ∈ Cat)
9473ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝐷 ∈ Cat)
951, 4, 5, 93, 94, 8, 84, 861stf2 18161 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑥(2nd𝑃)𝑧) = (1st ↾ (𝑥(Hom ‘𝑇)𝑧)))
9695fveq1d 6863 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑃)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = ((1st ↾ (𝑥(Hom ‘𝑇)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)))
9784fvresd 6881 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (1st𝑥))
9885fvresd 6881 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦) = (1st𝑦))
9997, 98opeq12d 4848 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ⟨((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩ = ⟨(1st𝑥), (1st𝑦)⟩)
10086fvresd 6881 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧) = (1st𝑧))
10199, 100oveq12d 7408 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (⟨((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩(comp‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧)) = (⟨(1st𝑥), (1st𝑦)⟩(comp‘𝐶)(1st𝑧)))
1021, 4, 5, 93, 94, 8, 85, 861stf2 18161 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑦(2nd𝑃)𝑧) = (1st ↾ (𝑦(Hom ‘𝑇)𝑧)))
103102fveq1d 6863 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑦(2nd𝑃)𝑧)‘𝑔) = ((1st ↾ (𝑦(Hom ‘𝑇)𝑧))‘𝑔))
10488fvresd 6881 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ (𝑦(Hom ‘𝑇)𝑧))‘𝑔) = (1st𝑔))
105103, 104eqtrd 2765 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑦(2nd𝑃)𝑧)‘𝑔) = (1st𝑔))
1061, 4, 5, 93, 94, 8, 84, 851stf2 18161 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑥(2nd𝑃)𝑦) = (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))
107106fveq1d 6863 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑃)𝑦)‘𝑓) = ((1st ↾ (𝑥(Hom ‘𝑇)𝑦))‘𝑓))
10887fvresd 6881 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ (𝑥(Hom ‘𝑇)𝑦))‘𝑓) = (1st𝑓))
109107, 108eqtrd 2765 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑃)𝑦)‘𝑓) = (1st𝑓))
110101, 105, 109oveq123d 7411 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (((𝑦(2nd𝑃)𝑧)‘𝑔)(⟨((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩(comp‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧))((𝑥(2nd𝑃)𝑦)‘𝑓)) = ((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝐶)(1st𝑧))(1st𝑓)))
11192, 96, 1103eqtr4d 2775 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑃)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = (((𝑦(2nd𝑃)𝑧)‘𝑔)(⟨((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩(comp‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧))((𝑥(2nd𝑃)𝑦)‘𝑓)))
1124, 2, 5, 23, 24, 25, 26, 27, 28, 6, 30, 37, 56, 82, 111isfuncd 17834 . . 3 (𝜑 → (1st ↾ ((Base‘𝐶) × (Base‘𝐷)))(𝑇 Func 𝐶)(2nd𝑃))
113 df-br 5111 . . 3 ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))(𝑇 Func 𝐶)(2nd𝑃) ↔ ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑃)⟩ ∈ (𝑇 Func 𝐶))
114112, 113sylib 218 . 2 (𝜑 → ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑃)⟩ ∈ (𝑇 Func 𝐶))
11522, 114eqeltrd 2829 1 (𝜑𝑃 ∈ (𝑇 Func 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598   class class class wbr 5110   × cxp 5639  cres 5643  Fun wfun 6508   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  Idccid 17633   Func cfunc 17823   ×c cxpc 18136   1stF c1stf 18137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-cat 17636  df-cid 17637  df-func 17827  df-xpc 18140  df-1stf 18141
This theorem is referenced by:  prf1st  18172  1st2ndprf  18174  uncfcl  18203  uncf1  18204  uncf2  18205  diagcl  18209  diag11  18211  diag12  18212  diag2  18213  yonedalem1  18240  yonedalem21  18241  yonedalem22  18246  oppc1stf  49281  diagpropd  49285
  Copyright terms: Public domain W3C validator