MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stfcl Structured version   Visualization version   GIF version

Theorem 1stfcl 17830
Description: The first projection functor is a functor onto the left argument. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfcl.t 𝑇 = (𝐶 ×c 𝐷)
1stfcl.c (𝜑𝐶 ∈ Cat)
1stfcl.d (𝜑𝐷 ∈ Cat)
1stfcl.p 𝑃 = (𝐶 1stF 𝐷)
Assertion
Ref Expression
1stfcl (𝜑𝑃 ∈ (𝑇 Func 𝐶))

Proof of Theorem 1stfcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfcl.t . . . 4 𝑇 = (𝐶 ×c 𝐷)
2 eqid 2738 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2738 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
41, 2, 3xpcbas 17811 . . . 4 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑇)
5 eqid 2738 . . . 4 (Hom ‘𝑇) = (Hom ‘𝑇)
6 1stfcl.c . . . 4 (𝜑𝐶 ∈ Cat)
7 1stfcl.d . . . 4 (𝜑𝐷 ∈ Cat)
8 1stfcl.p . . . 4 𝑃 = (𝐶 1stF 𝐷)
91, 4, 5, 6, 7, 81stfval 17824 . . 3 (𝜑𝑃 = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))⟩)
10 fo1st 7824 . . . . . . . 8 1st :V–onto→V
11 fofun 6673 . . . . . . . 8 (1st :V–onto→V → Fun 1st )
1210, 11ax-mp 5 . . . . . . 7 Fun 1st
13 fvex 6769 . . . . . . . 8 (Base‘𝐶) ∈ V
14 fvex 6769 . . . . . . . 8 (Base‘𝐷) ∈ V
1513, 14xpex 7581 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐷)) ∈ V
16 resfunexg 7073 . . . . . . 7 ((Fun 1st ∧ ((Base‘𝐶) × (Base‘𝐷)) ∈ V) → (1st ↾ ((Base‘𝐶) × (Base‘𝐷))) ∈ V)
1712, 15, 16mp2an 688 . . . . . 6 (1st ↾ ((Base‘𝐶) × (Base‘𝐷))) ∈ V
1815, 15mpoex 7893 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))) ∈ V
1917, 18op2ndd 7815 . . . . 5 (𝑃 = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))⟩ → (2nd𝑃) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))))
209, 19syl 17 . . . 4 (𝜑 → (2nd𝑃) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))))
2120opeq2d 4808 . . 3 (𝜑 → ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑃)⟩ = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))⟩)
229, 21eqtr4d 2781 . 2 (𝜑𝑃 = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑃)⟩)
23 eqid 2738 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
24 eqid 2738 . . . 4 (Id‘𝑇) = (Id‘𝑇)
25 eqid 2738 . . . 4 (Id‘𝐶) = (Id‘𝐶)
26 eqid 2738 . . . 4 (comp‘𝑇) = (comp‘𝑇)
27 eqid 2738 . . . 4 (comp‘𝐶) = (comp‘𝐶)
281, 6, 7xpccat 17823 . . . 4 (𝜑𝑇 ∈ Cat)
29 f1stres 7828 . . . . 5 (1st ↾ ((Base‘𝐶) × (Base‘𝐷))):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐶)
3029a1i 11 . . . 4 (𝜑 → (1st ↾ ((Base‘𝐶) × (Base‘𝐷))):((Base‘𝐶) × (Base‘𝐷))⟶(Base‘𝐶))
31 eqid 2738 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))
32 ovex 7288 . . . . . . 7 (𝑥(Hom ‘𝑇)𝑦) ∈ V
33 resfunexg 7073 . . . . . . 7 ((Fun 1st ∧ (𝑥(Hom ‘𝑇)𝑦) ∈ V) → (1st ↾ (𝑥(Hom ‘𝑇)𝑦)) ∈ V)
3412, 32, 33mp2an 688 . . . . . 6 (1st ↾ (𝑥(Hom ‘𝑇)𝑦)) ∈ V
3531, 34fnmpoi 7883 . . . . 5 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷)))
3620fneq1d 6510 . . . . 5 (𝜑 → ((2nd𝑃) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))) ↔ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘𝑇)𝑦))) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷)))))
3735, 36mpbiri 257 . . . 4 (𝜑 → (2nd𝑃) Fn (((Base‘𝐶) × (Base‘𝐷)) × ((Base‘𝐶) × (Base‘𝐷))))
38 f1stres 7828 . . . . . 6 (1st ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((1st𝑥)(Hom ‘𝐶)(1st𝑦))
396adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝐶 ∈ Cat)
407adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝐷 ∈ Cat)
41 simprl 767 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
42 simprr 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))
431, 4, 5, 39, 40, 8, 41, 421stf2 17826 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑃)𝑦) = (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))
44 eqid 2738 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
451, 4, 23, 44, 5, 41, 42xpchom 17813 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(Hom ‘𝑇)𝑦) = (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))))
4645reseq2d 5880 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (1st ↾ (𝑥(Hom ‘𝑇)𝑦)) = (1st ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))))
4743, 46eqtrd 2778 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑃)𝑦) = (1st ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))))
4847feq1d 6569 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((𝑥(2nd𝑃)𝑦):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((1st𝑥)(Hom ‘𝐶)(1st𝑦)) ↔ (1st ↾ (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((1st𝑥)(Hom ‘𝐶)(1st𝑦))))
4938, 48mpbiri 257 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑃)𝑦):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((1st𝑥)(Hom ‘𝐶)(1st𝑦)))
50 fvres 6775 . . . . . . . 8 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (1st𝑥))
5150ad2antrl 724 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (1st𝑥))
52 fvres 6775 . . . . . . . 8 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦) = (1st𝑦))
5352ad2antll 725 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦) = (1st𝑦))
5451, 53oveq12d 7273 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)(Hom ‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)) = ((1st𝑥)(Hom ‘𝐶)(1st𝑦)))
5545, 54feq23d 6579 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → ((𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶(((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)(Hom ‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)) ↔ (𝑥(2nd𝑃)𝑦):(((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))⟶((1st𝑥)(Hom ‘𝐶)(1st𝑦))))
5649, 55mpbird 256 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))) → (𝑥(2nd𝑃)𝑦):(𝑥(Hom ‘𝑇)𝑦)⟶(((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)(Hom ‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)))
5728adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑇 ∈ Cat)
58 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
594, 5, 24, 57, 58catidcl 17308 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘𝑥) ∈ (𝑥(Hom ‘𝑇)𝑥))
6059fvresd 6776 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((1st ↾ (𝑥(Hom ‘𝑇)𝑥))‘((Id‘𝑇)‘𝑥)) = (1st ‘((Id‘𝑇)‘𝑥)))
61 1st2nd2 7843 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6261adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6362fveq2d 6760 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘𝑥) = ((Id‘𝑇)‘⟨(1st𝑥), (2nd𝑥)⟩))
646adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝐶 ∈ Cat)
657adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝐷 ∈ Cat)
66 eqid 2738 . . . . . . . . 9 (Id‘𝐷) = (Id‘𝐷)
67 xp1st 7836 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st𝑥) ∈ (Base‘𝐶))
6867adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (1st𝑥) ∈ (Base‘𝐶))
69 xp2nd 7837 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd𝑥) ∈ (Base‘𝐷))
7069adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (2nd𝑥) ∈ (Base‘𝐷))
711, 64, 65, 2, 3, 25, 66, 24, 68, 70xpcid 17822 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘⟨(1st𝑥), (2nd𝑥)⟩) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐷)‘(2nd𝑥))⟩)
7263, 71eqtrd 2778 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝑇)‘𝑥) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐷)‘(2nd𝑥))⟩)
73 fvex 6769 . . . . . . . 8 ((Id‘𝐶)‘(1st𝑥)) ∈ V
74 fvex 6769 . . . . . . . 8 ((Id‘𝐷)‘(2nd𝑥)) ∈ V
7573, 74op1std 7814 . . . . . . 7 (((Id‘𝑇)‘𝑥) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐷)‘(2nd𝑥))⟩ → (1st ‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
7672, 75syl 17 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (1st ‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
7760, 76eqtrd 2778 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((1st ↾ (𝑥(Hom ‘𝑇)𝑥))‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
781, 4, 5, 64, 65, 8, 58, 581stf2 17826 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑥(2nd𝑃)𝑥) = (1st ↾ (𝑥(Hom ‘𝑇)𝑥)))
7978fveq1d 6758 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((𝑥(2nd𝑃)𝑥)‘((Id‘𝑇)‘𝑥)) = ((1st ↾ (𝑥(Hom ‘𝑇)𝑥))‘((Id‘𝑇)‘𝑥)))
8050adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (1st𝑥))
8180fveq2d 6760 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((Id‘𝐶)‘((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
8277, 79, 813eqtr4d 2788 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → ((𝑥(2nd𝑃)𝑥)‘((Id‘𝑇)‘𝑥)) = ((Id‘𝐶)‘((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥)))
83283ad2ant1 1131 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑇 ∈ Cat)
84 simp21 1204 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
85 simp22 1205 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))
86 simp23 1206 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷)))
87 simp3l 1199 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦))
88 simp3r 1200 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))
894, 5, 26, 83, 84, 85, 86, 87, 88catcocl 17311 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓) ∈ (𝑥(Hom ‘𝑇)𝑧))
9089fvresd 6776 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ (𝑥(Hom ‘𝑇)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = (1st ‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)))
911, 4, 5, 26, 84, 85, 86, 87, 88, 27xpcco1st 17817 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (1st ‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = ((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝐶)(1st𝑧))(1st𝑓)))
9290, 91eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ (𝑥(Hom ‘𝑇)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = ((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝐶)(1st𝑧))(1st𝑓)))
9363ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝐶 ∈ Cat)
9473ad2ant1 1131 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → 𝐷 ∈ Cat)
951, 4, 5, 93, 94, 8, 84, 861stf2 17826 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑥(2nd𝑃)𝑧) = (1st ↾ (𝑥(Hom ‘𝑇)𝑧)))
9695fveq1d 6758 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑃)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = ((1st ↾ (𝑥(Hom ‘𝑇)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)))
9784fvresd 6776 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥) = (1st𝑥))
9885fvresd 6776 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦) = (1st𝑦))
9997, 98opeq12d 4809 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ⟨((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩ = ⟨(1st𝑥), (1st𝑦)⟩)
10086fvresd 6776 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧) = (1st𝑧))
10199, 100oveq12d 7273 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (⟨((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩(comp‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧)) = (⟨(1st𝑥), (1st𝑦)⟩(comp‘𝐶)(1st𝑧)))
1021, 4, 5, 93, 94, 8, 85, 861stf2 17826 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑦(2nd𝑃)𝑧) = (1st ↾ (𝑦(Hom ‘𝑇)𝑧)))
103102fveq1d 6758 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑦(2nd𝑃)𝑧)‘𝑔) = ((1st ↾ (𝑦(Hom ‘𝑇)𝑧))‘𝑔))
10488fvresd 6776 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ (𝑦(Hom ‘𝑇)𝑧))‘𝑔) = (1st𝑔))
105103, 104eqtrd 2778 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑦(2nd𝑃)𝑧)‘𝑔) = (1st𝑔))
1061, 4, 5, 93, 94, 8, 84, 851stf2 17826 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (𝑥(2nd𝑃)𝑦) = (1st ↾ (𝑥(Hom ‘𝑇)𝑦)))
107106fveq1d 6758 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑃)𝑦)‘𝑓) = ((1st ↾ (𝑥(Hom ‘𝑇)𝑦))‘𝑓))
10887fvresd 6776 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((1st ↾ (𝑥(Hom ‘𝑇)𝑦))‘𝑓) = (1st𝑓))
109107, 108eqtrd 2778 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑃)𝑦)‘𝑓) = (1st𝑓))
110101, 105, 109oveq123d 7276 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → (((𝑦(2nd𝑃)𝑧)‘𝑔)(⟨((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩(comp‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧))((𝑥(2nd𝑃)𝑦)‘𝑓)) = ((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝐶)(1st𝑧))(1st𝑓)))
11192, 96, 1103eqtr4d 2788 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐷))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝑇)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝑇)𝑧))) → ((𝑥(2nd𝑃)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑇)𝑧)𝑓)) = (((𝑦(2nd𝑃)𝑧)‘𝑔)(⟨((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑥), ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑦)⟩(comp‘𝐶)((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))‘𝑧))((𝑥(2nd𝑃)𝑦)‘𝑓)))
1124, 2, 5, 23, 24, 25, 26, 27, 28, 6, 30, 37, 56, 82, 111isfuncd 17496 . . 3 (𝜑 → (1st ↾ ((Base‘𝐶) × (Base‘𝐷)))(𝑇 Func 𝐶)(2nd𝑃))
113 df-br 5071 . . 3 ((1st ↾ ((Base‘𝐶) × (Base‘𝐷)))(𝑇 Func 𝐶)(2nd𝑃) ↔ ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑃)⟩ ∈ (𝑇 Func 𝐶))
114112, 113sylib 217 . 2 (𝜑 → ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (2nd𝑃)⟩ ∈ (𝑇 Func 𝐶))
11522, 114eqeltrd 2839 1 (𝜑𝑃 ∈ (𝑇 Func 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564   class class class wbr 5070   × cxp 5578  cres 5582  Fun wfun 6412   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290  Idccid 17291   Func cfunc 17485   ×c cxpc 17801   1stF c1stf 17802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-cat 17294  df-cid 17295  df-func 17489  df-xpc 17805  df-1stf 17806
This theorem is referenced by:  prf1st  17837  1st2ndprf  17839  uncfcl  17869  uncf1  17870  uncf2  17871  diagcl  17875  diag11  17877  diag12  17878  diag2  17879  yonedalem1  17906  yonedalem21  17907  yonedalem22  17912
  Copyright terms: Public domain W3C validator