| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1stf2 | Structured version Visualization version GIF version | ||
| Description: Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| 1stfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
| 1stfval.b | ⊢ 𝐵 = (Base‘𝑇) |
| 1stfval.h | ⊢ 𝐻 = (Hom ‘𝑇) |
| 1stfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 1stfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 1stfval.p | ⊢ 𝑃 = (𝐶 1stF 𝐷) |
| 1stf1.p | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
| 1stf2.p | ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| 1stf2 | ⊢ (𝜑 → (𝑅(2nd ‘𝑃)𝑆) = (1st ↾ (𝑅𝐻𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stfval.t | . . . 4 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
| 2 | 1stfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑇) | |
| 3 | 1stfval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝑇) | |
| 4 | 1stfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | 1stfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 6 | 1stfval.p | . . . 4 ⊢ 𝑃 = (𝐶 1stF 𝐷) | |
| 7 | 1, 2, 3, 4, 5, 6 | 1stfval 18203 | . . 3 ⊢ (𝜑 → 𝑃 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
| 8 | fo1st 8008 | . . . . . 6 ⊢ 1st :V–onto→V | |
| 9 | fofun 6791 | . . . . . 6 ⊢ (1st :V–onto→V → Fun 1st ) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ Fun 1st |
| 11 | 2 | fvexi 6890 | . . . . 5 ⊢ 𝐵 ∈ V |
| 12 | resfunexg 7207 | . . . . 5 ⊢ ((Fun 1st ∧ 𝐵 ∈ V) → (1st ↾ 𝐵) ∈ V) | |
| 13 | 10, 11, 12 | mp2an 692 | . . . 4 ⊢ (1st ↾ 𝐵) ∈ V |
| 14 | 11, 11 | mpoex 8078 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦))) ∈ V |
| 15 | 13, 14 | op2ndd 7999 | . . 3 ⊢ (𝑃 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉 → (2nd ‘𝑃) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))) |
| 16 | 7, 15 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘𝑃) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))) |
| 17 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑥 = 𝑅) | |
| 18 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑦 = 𝑆) | |
| 19 | 17, 18 | oveq12d 7423 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝑥𝐻𝑦) = (𝑅𝐻𝑆)) |
| 20 | 19 | reseq2d 5966 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (1st ↾ (𝑥𝐻𝑦)) = (1st ↾ (𝑅𝐻𝑆))) |
| 21 | 1stf1.p | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
| 22 | 1stf2.p | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝐵) | |
| 23 | ovex 7438 | . . . 4 ⊢ (𝑅𝐻𝑆) ∈ V | |
| 24 | resfunexg 7207 | . . . 4 ⊢ ((Fun 1st ∧ (𝑅𝐻𝑆) ∈ V) → (1st ↾ (𝑅𝐻𝑆)) ∈ V) | |
| 25 | 10, 23, 24 | mp2an 692 | . . 3 ⊢ (1st ↾ (𝑅𝐻𝑆)) ∈ V |
| 26 | 25 | a1i 11 | . 2 ⊢ (𝜑 → (1st ↾ (𝑅𝐻𝑆)) ∈ V) |
| 27 | 16, 20, 21, 22, 26 | ovmpod 7559 | 1 ⊢ (𝜑 → (𝑅(2nd ‘𝑃)𝑆) = (1st ↾ (𝑅𝐻𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 ↾ cres 5656 Fun wfun 6525 –onto→wfo 6529 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 1st c1st 7986 2nd c2nd 7987 Basecbs 17228 Hom chom 17282 Catccat 17676 ×c cxpc 18180 1stF c1stf 18181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-slot 17201 df-ndx 17213 df-base 17229 df-hom 17295 df-cco 17296 df-xpc 18184 df-1stf 18185 |
| This theorem is referenced by: 1stfcl 18209 prf1st 18216 1st2ndprf 18218 uncf2 18249 diag12 18256 diag2 18257 yonedalem22 18290 |
| Copyright terms: Public domain | W3C validator |