![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stf2 | Structured version Visualization version GIF version |
Description: Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
1stfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
1stfval.b | ⊢ 𝐵 = (Base‘𝑇) |
1stfval.h | ⊢ 𝐻 = (Hom ‘𝑇) |
1stfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
1stfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
1stfval.p | ⊢ 𝑃 = (𝐶 1stF 𝐷) |
1stf1.p | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
1stf2.p | ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
Ref | Expression |
---|---|
1stf2 | ⊢ (𝜑 → (𝑅(2nd ‘𝑃)𝑆) = (1st ↾ (𝑅𝐻𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1stfval.t | . . . 4 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | 1stfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑇) | |
3 | 1stfval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝑇) | |
4 | 1stfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | 1stfval.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
6 | 1stfval.p | . . . 4 ⊢ 𝑃 = (𝐶 1stF 𝐷) | |
7 | 1, 2, 3, 4, 5, 6 | 1stfval 17289 | . . 3 ⊢ (𝜑 → 𝑃 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) |
8 | fo1st 7514 | . . . . . 6 ⊢ 1st :V–onto→V | |
9 | fofun 6414 | . . . . . 6 ⊢ (1st :V–onto→V → Fun 1st ) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ Fun 1st |
11 | 2 | fvexi 6507 | . . . . 5 ⊢ 𝐵 ∈ V |
12 | resfunexg 6798 | . . . . 5 ⊢ ((Fun 1st ∧ 𝐵 ∈ V) → (1st ↾ 𝐵) ∈ V) | |
13 | 10, 11, 12 | mp2an 679 | . . . 4 ⊢ (1st ↾ 𝐵) ∈ V |
14 | 11, 11 | mpoex 7578 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦))) ∈ V |
15 | 13, 14 | op2ndd 7505 | . . 3 ⊢ (𝑃 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉 → (2nd ‘𝑃) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))) |
16 | 7, 15 | syl 17 | . 2 ⊢ (𝜑 → (2nd ‘𝑃) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))) |
17 | simprl 758 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑥 = 𝑅) | |
18 | simprr 760 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑦 = 𝑆) | |
19 | 17, 18 | oveq12d 6988 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝑥𝐻𝑦) = (𝑅𝐻𝑆)) |
20 | 19 | reseq2d 5688 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (1st ↾ (𝑥𝐻𝑦)) = (1st ↾ (𝑅𝐻𝑆))) |
21 | 1stf1.p | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
22 | 1stf2.p | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝐵) | |
23 | ovex 7002 | . . . 4 ⊢ (𝑅𝐻𝑆) ∈ V | |
24 | resfunexg 6798 | . . . 4 ⊢ ((Fun 1st ∧ (𝑅𝐻𝑆) ∈ V) → (1st ↾ (𝑅𝐻𝑆)) ∈ V) | |
25 | 10, 23, 24 | mp2an 679 | . . 3 ⊢ (1st ↾ (𝑅𝐻𝑆)) ∈ V |
26 | 25 | a1i 11 | . 2 ⊢ (𝜑 → (1st ↾ (𝑅𝐻𝑆)) ∈ V) |
27 | 16, 20, 21, 22, 26 | ovmpod 7112 | 1 ⊢ (𝜑 → (𝑅(2nd ‘𝑃)𝑆) = (1st ↾ (𝑅𝐻𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 Vcvv 3409 〈cop 4441 ↾ cres 5402 Fun wfun 6176 –onto→wfo 6180 ‘cfv 6182 (class class class)co 6970 ∈ cmpo 6972 1st c1st 7492 2nd c2nd 7493 Basecbs 16329 Hom chom 16422 Catccat 16783 ×c cxpc 17266 1stF c1stf 17267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-3 11497 df-4 11498 df-5 11499 df-6 11500 df-7 11501 df-8 11502 df-9 11503 df-n0 11701 df-z 11787 df-dec 11905 df-ndx 16332 df-slot 16333 df-base 16335 df-hom 16435 df-cco 16436 df-xpc 17270 df-1stf 17271 |
This theorem is referenced by: 1stfcl 17295 prf1st 17302 1st2ndprf 17304 uncf2 17335 diag12 17342 diag2 17343 yonedalem22 17376 |
Copyright terms: Public domain | W3C validator |