MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  focdmex Structured version   Visualization version   GIF version

Theorem focdmex 7942
Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
focdmex (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))

Proof of Theorem focdmex
StepHypRef Expression
1 fofun 6807 . . . 4 (𝐹:𝐴onto𝐵 → Fun 𝐹)
2 funrnex 7940 . . . 4 (dom 𝐹𝐶 → (Fun 𝐹 → ran 𝐹 ∈ V))
31, 2syl5com 31 . . 3 (𝐹:𝐴onto𝐵 → (dom 𝐹𝐶 → ran 𝐹 ∈ V))
4 fof 6806 . . . . 5 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
54fdmd 6729 . . . 4 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
65eleq1d 2819 . . 3 (𝐹:𝐴onto𝐵 → (dom 𝐹𝐶𝐴𝐶))
7 forn 6809 . . . 4 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
87eleq1d 2819 . . 3 (𝐹:𝐴onto𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V))
93, 6, 83imtr3d 293 . 2 (𝐹:𝐴onto𝐵 → (𝐴𝐶𝐵 ∈ V))
109com12 32 1 (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3475  dom cdm 5677  ran crn 5678  Fun wfun 6538  ontowfo 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552
This theorem is referenced by:  f1dmex  7943  f1ovv  7944  fsetprcnex  8856  f1oeng  8967  fodomnum  10052  ttukeylem1  10504  fodomb  10521  cnexALT  12970  hasheqf1oi  14311  imasbas  17458  imasds  17459  elqtop  23201  qtoprest  23221  indishmph  23302  imasf1oxmet  23881  noprc  27281  foresf1o  31742  sge0f1o  45098  sge0fodjrnlem  45132
  Copyright terms: Public domain W3C validator