MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  focdmex Structured version   Visualization version   GIF version

Theorem focdmex 7965
Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
focdmex (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))

Proof of Theorem focdmex
StepHypRef Expression
1 fofun 6817 . . . 4 (𝐹:𝐴onto𝐵 → Fun 𝐹)
2 funrnex 7963 . . . 4 (dom 𝐹𝐶 → (Fun 𝐹 → ran 𝐹 ∈ V))
31, 2syl5com 31 . . 3 (𝐹:𝐴onto𝐵 → (dom 𝐹𝐶 → ran 𝐹 ∈ V))
4 fof 6816 . . . . 5 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
54fdmd 6738 . . . 4 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
65eleq1d 2814 . . 3 (𝐹:𝐴onto𝐵 → (dom 𝐹𝐶𝐴𝐶))
7 forn 6819 . . . 4 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
87eleq1d 2814 . . 3 (𝐹:𝐴onto𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V))
93, 6, 83imtr3d 292 . 2 (𝐹:𝐴onto𝐵 → (𝐴𝐶𝐵 ∈ V))
109com12 32 1 (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Vcvv 3473  dom cdm 5682  ran crn 5683  Fun wfun 6547  ontowfo 6551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561
This theorem is referenced by:  f1dmex  7966  f1ovv  7967  fsetprcnex  8887  f1oeng  8998  fodomnum  10088  ttukeylem1  10540  fodomb  10557  cnexALT  13008  hasheqf1oi  14350  imasbas  17501  imasds  17502  elqtop  23621  qtoprest  23641  indishmph  23722  imasf1oxmet  24301  noprc  27732  foresf1o  32321  sge0f1o  45799  sge0fodjrnlem  45833
  Copyright terms: Public domain W3C validator