| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > focdmex | Structured version Visualization version GIF version | ||
| Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| focdmex | ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofun 6796 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | |
| 2 | funrnex 7957 | . . . 4 ⊢ (dom 𝐹 ∈ 𝐶 → (Fun 𝐹 → ran 𝐹 ∈ V)) | |
| 3 | 1, 2 | syl5com 31 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (dom 𝐹 ∈ 𝐶 → ran 𝐹 ∈ V)) |
| 4 | fof 6795 | . . . . 5 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 5 | 4 | fdmd 6721 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
| 6 | 5 | eleq1d 2820 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (dom 𝐹 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) |
| 7 | forn 6798 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 8 | 7 | eleq1d 2820 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)) |
| 9 | 3, 6, 8 | 3imtr3d 293 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ∈ 𝐶 → 𝐵 ∈ V)) |
| 10 | 9 | com12 32 | 1 ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 dom cdm 5659 ran crn 5660 Fun wfun 6530 –onto→wfo 6534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 |
| This theorem is referenced by: f1dmex 7960 f1ovv 7961 fsetprcnex 8881 f1oeng 8990 fodomnum 10076 ttukeylem1 10528 fodomb 10545 cnexALT 13007 hasheqf1oi 14374 imasbas 17531 imasds 17532 elqtop 23640 qtoprest 23660 indishmph 23741 imasf1oxmet 24319 noprc 27748 foresf1o 32490 sge0f1o 46378 sge0fodjrnlem 46412 |
| Copyright terms: Public domain | W3C validator |