MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  focdmex Structured version   Visualization version   GIF version

Theorem focdmex 7883
Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
focdmex (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))

Proof of Theorem focdmex
StepHypRef Expression
1 fofun 6731 . . . 4 (𝐹:𝐴onto𝐵 → Fun 𝐹)
2 funrnex 7881 . . . 4 (dom 𝐹𝐶 → (Fun 𝐹 → ran 𝐹 ∈ V))
31, 2syl5com 31 . . 3 (𝐹:𝐴onto𝐵 → (dom 𝐹𝐶 → ran 𝐹 ∈ V))
4 fof 6730 . . . . 5 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
54fdmd 6656 . . . 4 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
65eleq1d 2816 . . 3 (𝐹:𝐴onto𝐵 → (dom 𝐹𝐶𝐴𝐶))
7 forn 6733 . . . 4 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
87eleq1d 2816 . . 3 (𝐹:𝐴onto𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V))
93, 6, 83imtr3d 293 . 2 (𝐹:𝐴onto𝐵 → (𝐴𝐶𝐵 ∈ V))
109com12 32 1 (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  dom cdm 5611  ran crn 5612  Fun wfun 6470  ontowfo 6474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484
This theorem is referenced by:  f1dmex  7884  f1ovv  7885  fsetprcnex  8781  f1oeng  8888  fodomnum  9943  ttukeylem1  10395  fodomb  10412  cnexALT  12879  hasheqf1oi  14253  imasbas  17411  imasds  17412  elqtop  23607  qtoprest  23627  indishmph  23708  imasf1oxmet  24285  noprc  27714  foresf1o  32476  sge0f1o  46420  sge0fodjrnlem  46454
  Copyright terms: Public domain W3C validator