MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  focdmex Structured version   Visualization version   GIF version

Theorem focdmex 7898
Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
focdmex (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))

Proof of Theorem focdmex
StepHypRef Expression
1 fofun 6741 . . . 4 (𝐹:𝐴onto𝐵 → Fun 𝐹)
2 funrnex 7896 . . . 4 (dom 𝐹𝐶 → (Fun 𝐹 → ran 𝐹 ∈ V))
31, 2syl5com 31 . . 3 (𝐹:𝐴onto𝐵 → (dom 𝐹𝐶 → ran 𝐹 ∈ V))
4 fof 6740 . . . . 5 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
54fdmd 6666 . . . 4 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
65eleq1d 2813 . . 3 (𝐹:𝐴onto𝐵 → (dom 𝐹𝐶𝐴𝐶))
7 forn 6743 . . . 4 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
87eleq1d 2813 . . 3 (𝐹:𝐴onto𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V))
93, 6, 83imtr3d 293 . 2 (𝐹:𝐴onto𝐵 → (𝐴𝐶𝐵 ∈ V))
109com12 32 1 (𝐴𝐶 → (𝐹:𝐴onto𝐵𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3438  dom cdm 5623  ran crn 5624  Fun wfun 6480  ontowfo 6484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494
This theorem is referenced by:  f1dmex  7899  f1ovv  7900  fsetprcnex  8796  f1oeng  8903  fodomnum  9970  ttukeylem1  10422  fodomb  10439  cnexALT  12906  hasheqf1oi  14277  imasbas  17435  imasds  17436  elqtop  23601  qtoprest  23621  indishmph  23702  imasf1oxmet  24280  noprc  27709  foresf1o  32467  sge0f1o  46383  sge0fodjrnlem  46417
  Copyright terms: Public domain W3C validator