MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  focdmex Structured version   Visualization version   GIF version

Theorem focdmex 14065
Description: The codomain of an onto function is a set if its domain is a set. (Contributed by AV, 4-May-2021.)
Assertion
Ref Expression
focdmex ((𝐴𝑉𝐹:𝐴onto𝐵) → 𝐵 ∈ V)

Proof of Theorem focdmex
StepHypRef Expression
1 fof 6688 . . . . 5 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
21anim2i 617 . . . 4 ((𝐴𝑉𝐹:𝐴onto𝐵) → (𝐴𝑉𝐹:𝐴𝐵))
32ancomd 462 . . 3 ((𝐴𝑉𝐹:𝐴onto𝐵) → (𝐹:𝐴𝐵𝐴𝑉))
4 fex 7102 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
5 rnexg 7751 . . 3 (𝐹 ∈ V → ran 𝐹 ∈ V)
63, 4, 53syl 18 . 2 ((𝐴𝑉𝐹:𝐴onto𝐵) → ran 𝐹 ∈ V)
7 forn 6691 . . . 4 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
87eleq1d 2823 . . 3 (𝐹:𝐴onto𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V))
98adantl 482 . 2 ((𝐴𝑉𝐹:𝐴onto𝐵) → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V))
106, 9mpbid 231 1 ((𝐴𝑉𝐹:𝐴onto𝐵) → 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3432  ran crn 5590  wf 6429  ontowfo 6431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  hasheqf1oi  14066
  Copyright terms: Public domain W3C validator