![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > focdmex | Structured version Visualization version GIF version |
Description: The codomain of an onto function is a set if its domain is a set. (Contributed by AV, 4-May-2021.) |
Ref | Expression |
---|---|
focdmex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 6366 | . . . . 5 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | anim2i 610 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → (𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶𝐵)) |
3 | 2 | ancomd 455 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → (𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉)) |
4 | fex 6761 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
5 | rnexg 7376 | . . 3 ⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) | |
6 | 3, 4, 5 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → ran 𝐹 ∈ V) |
7 | forn 6369 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
8 | 7 | eleq1d 2844 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)) |
9 | 8 | adantl 475 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)) |
10 | 6, 9 | mpbid 224 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2107 Vcvv 3398 ran crn 5356 ⟶wf 6131 –onto→wfo 6133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 |
This theorem is referenced by: hasheqf1oi 13457 |
Copyright terms: Public domain | W3C validator |