MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomfi2 Structured version   Visualization version   GIF version

Theorem fodomfi2 10100
Description: Onto functions define dominance when a finite number of choices need to be made. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fodomfi2 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)

Proof of Theorem fodomfi2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fofn 6822 . . . 4 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
213ad2ant3 1136 . . 3 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐹 Fn 𝐴)
3 forn 6823 . . . . 5 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
4 eqimss2 4043 . . . . 5 (ran 𝐹 = 𝐵𝐵 ⊆ ran 𝐹)
53, 4syl 17 . . . 4 (𝐹:𝐴onto𝐵𝐵 ⊆ ran 𝐹)
653ad2ant3 1136 . . 3 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ⊆ ran 𝐹)
7 simp2 1138 . . 3 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ Fin)
8 fipreima 9398 . . 3 ((𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹𝐵 ∈ Fin) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝐹𝑥) = 𝐵)
92, 6, 7, 8syl3anc 1373 . 2 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝐹𝑥) = 𝐵)
10 elinel2 4202 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
1110adantl 481 . . . . . . 7 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
12 finnum 9988 . . . . . . 7 (𝑥 ∈ Fin → 𝑥 ∈ dom card)
1311, 12syl 17 . . . . . 6 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ dom card)
14 simpl3 1194 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴onto𝐵)
15 fofun 6821 . . . . . . . 8 (𝐹:𝐴onto𝐵 → Fun 𝐹)
1614, 15syl 17 . . . . . . 7 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Fun 𝐹)
17 elinel1 4201 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
1817elpwid 4609 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
1918adantl 481 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
20 fof 6820 . . . . . . . . 9 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
21 fdm 6745 . . . . . . . . 9 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2214, 20, 213syl 18 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → dom 𝐹 = 𝐴)
2319, 22sseqtrrd 4021 . . . . . . 7 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ⊆ dom 𝐹)
24 fores 6830 . . . . . . 7 ((Fun 𝐹𝑥 ⊆ dom 𝐹) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
2516, 23, 24syl2anc 584 . . . . . 6 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
26 fodomnum 10097 . . . . . 6 (𝑥 ∈ dom card → ((𝐹𝑥):𝑥onto→(𝐹𝑥) → (𝐹𝑥) ≼ 𝑥))
2713, 25, 26sylc 65 . . . . 5 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑥) ≼ 𝑥)
28 simpl1 1192 . . . . . 6 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
29 ssdomg 9040 . . . . . 6 (𝐴𝑉 → (𝑥𝐴𝑥𝐴))
3028, 19, 29sylc 65 . . . . 5 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
31 domtr 9047 . . . . 5 (((𝐹𝑥) ≼ 𝑥𝑥𝐴) → (𝐹𝑥) ≼ 𝐴)
3227, 30, 31syl2anc 584 . . . 4 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑥) ≼ 𝐴)
33 breq1 5146 . . . 4 ((𝐹𝑥) = 𝐵 → ((𝐹𝑥) ≼ 𝐴𝐵𝐴))
3432, 33syl5ibcom 245 . . 3 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑥) = 𝐵𝐵𝐴))
3534rexlimdva 3155 . 2 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝐹𝑥) = 𝐵𝐵𝐴))
369, 35mpd 15 1 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  cin 3950  wss 3951  𝒫 cpw 4600   class class class wbr 5143  dom cdm 5685  ran crn 5686  cres 5687  cima 5688  Fun wfun 6555   Fn wfn 6556  wf 6557  ontowfo 6559  cdom 8983  Fincfn 8985  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-fin 8989  df-card 9979  df-acn 9982
This theorem is referenced by:  wdomfil  10101
  Copyright terms: Public domain W3C validator