Step | Hyp | Ref
| Expression |
1 | | fofn 6674 |
. . . 4
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
2 | 1 | 3ad2ant3 1133 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐹 Fn 𝐴) |
3 | | forn 6675 |
. . . . 5
⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) |
4 | | eqimss2 3974 |
. . . . 5
⊢ (ran
𝐹 = 𝐵 → 𝐵 ⊆ ran 𝐹) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝐹:𝐴–onto→𝐵 → 𝐵 ⊆ ran 𝐹) |
6 | 5 | 3ad2ant3 1133 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ⊆ ran 𝐹) |
7 | | simp2 1135 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) |
8 | | fipreima 9055 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ ran 𝐹 ∧ 𝐵 ∈ Fin) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝐹 “ 𝑥) = 𝐵) |
9 | 2, 6, 7, 8 | syl3anc 1369 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝐹 “ 𝑥) = 𝐵) |
10 | | elinel2 4126 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin) |
11 | 10 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin) |
12 | | finnum 9637 |
. . . . . . 7
⊢ (𝑥 ∈ Fin → 𝑥 ∈ dom
card) |
13 | 11, 12 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ dom card) |
14 | | simpl3 1191 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴–onto→𝐵) |
15 | | fofun 6673 |
. . . . . . . 8
⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) |
16 | 14, 15 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Fun 𝐹) |
17 | | elinel1 4125 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴) |
18 | 17 | elpwid 4541 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) |
19 | 18 | adantl 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ⊆ 𝐴) |
20 | | fof 6672 |
. . . . . . . . 9
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
21 | | fdm 6593 |
. . . . . . . . 9
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
22 | 14, 20, 21 | 3syl 18 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → dom 𝐹 = 𝐴) |
23 | 19, 22 | sseqtrrd 3958 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ⊆ dom 𝐹) |
24 | | fores 6682 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝑥 ⊆ dom 𝐹) → (𝐹 ↾ 𝑥):𝑥–onto→(𝐹 “ 𝑥)) |
25 | 16, 23, 24 | syl2anc 583 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ 𝑥):𝑥–onto→(𝐹 “ 𝑥)) |
26 | | fodomnum 9744 |
. . . . . 6
⊢ (𝑥 ∈ dom card → ((𝐹 ↾ 𝑥):𝑥–onto→(𝐹 “ 𝑥) → (𝐹 “ 𝑥) ≼ 𝑥)) |
27 | 13, 25, 26 | sylc 65 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 “ 𝑥) ≼ 𝑥) |
28 | | simpl1 1189 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴 ∈ 𝑉) |
29 | | ssdomg 8741 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴)) |
30 | 28, 19, 29 | sylc 65 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ≼ 𝐴) |
31 | | domtr 8748 |
. . . . 5
⊢ (((𝐹 “ 𝑥) ≼ 𝑥 ∧ 𝑥 ≼ 𝐴) → (𝐹 “ 𝑥) ≼ 𝐴) |
32 | 27, 30, 31 | syl2anc 583 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 “ 𝑥) ≼ 𝐴) |
33 | | breq1 5073 |
. . . 4
⊢ ((𝐹 “ 𝑥) = 𝐵 → ((𝐹 “ 𝑥) ≼ 𝐴 ↔ 𝐵 ≼ 𝐴)) |
34 | 32, 33 | syl5ibcom 244 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 “ 𝑥) = 𝐵 → 𝐵 ≼ 𝐴)) |
35 | 34 | rexlimdva 3212 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝐹 “ 𝑥) = 𝐵 → 𝐵 ≼ 𝐴)) |
36 | 9, 35 | mpd 15 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) |