Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomfi2 Structured version   Visualization version   GIF version

Theorem fodomfi2 9474
 Description: Onto functions define dominance when a finite number of choices need to be made. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fodomfi2 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)

Proof of Theorem fodomfi2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fofn 6568 . . . 4 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
213ad2ant3 1132 . . 3 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐹 Fn 𝐴)
3 forn 6569 . . . . 5 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
4 eqimss2 3972 . . . . 5 (ran 𝐹 = 𝐵𝐵 ⊆ ran 𝐹)
53, 4syl 17 . . . 4 (𝐹:𝐴onto𝐵𝐵 ⊆ ran 𝐹)
653ad2ant3 1132 . . 3 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ⊆ ran 𝐹)
7 simp2 1134 . . 3 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ Fin)
8 fipreima 8817 . . 3 ((𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹𝐵 ∈ Fin) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝐹𝑥) = 𝐵)
92, 6, 7, 8syl3anc 1368 . 2 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝐹𝑥) = 𝐵)
10 elinel2 4123 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
1110adantl 485 . . . . . . 7 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
12 finnum 9364 . . . . . . 7 (𝑥 ∈ Fin → 𝑥 ∈ dom card)
1311, 12syl 17 . . . . . 6 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ dom card)
14 simpl3 1190 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴onto𝐵)
15 fofun 6567 . . . . . . . 8 (𝐹:𝐴onto𝐵 → Fun 𝐹)
1614, 15syl 17 . . . . . . 7 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Fun 𝐹)
17 elinel1 4122 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
1817elpwid 4508 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
1918adantl 485 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
20 fof 6566 . . . . . . . . 9 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
21 fdm 6496 . . . . . . . . 9 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2214, 20, 213syl 18 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → dom 𝐹 = 𝐴)
2319, 22sseqtrrd 3956 . . . . . . 7 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ⊆ dom 𝐹)
24 fores 6576 . . . . . . 7 ((Fun 𝐹𝑥 ⊆ dom 𝐹) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
2516, 23, 24syl2anc 587 . . . . . 6 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
26 fodomnum 9471 . . . . . 6 (𝑥 ∈ dom card → ((𝐹𝑥):𝑥onto→(𝐹𝑥) → (𝐹𝑥) ≼ 𝑥))
2713, 25, 26sylc 65 . . . . 5 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑥) ≼ 𝑥)
28 simpl1 1188 . . . . . 6 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
29 ssdomg 8541 . . . . . 6 (𝐴𝑉 → (𝑥𝐴𝑥𝐴))
3028, 19, 29sylc 65 . . . . 5 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
31 domtr 8548 . . . . 5 (((𝐹𝑥) ≼ 𝑥𝑥𝐴) → (𝐹𝑥) ≼ 𝐴)
3227, 30, 31syl2anc 587 . . . 4 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑥) ≼ 𝐴)
33 breq1 5034 . . . 4 ((𝐹𝑥) = 𝐵 → ((𝐹𝑥) ≼ 𝐴𝐵𝐴))
3432, 33syl5ibcom 248 . . 3 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑥) = 𝐵𝐵𝐴))
3534rexlimdva 3243 . 2 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝐹𝑥) = 𝐵𝐵𝐴))
369, 35mpd 15 1 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∃wrex 3107   ∩ cin 3880   ⊆ wss 3881  𝒫 cpw 4497   class class class wbr 5031  dom cdm 5520  ran crn 5521   ↾ cres 5522   “ cima 5523  Fun wfun 6319   Fn wfn 6320  ⟶wf 6321  –onto→wfo 6323   ≼ cdom 8493  Fincfn 8495  cardccrd 9351 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-1o 8088  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-fin 8499  df-card 9355  df-acn 9358 This theorem is referenced by:  wdomfil  9475
 Copyright terms: Public domain W3C validator