MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomfi2 Structured version   Visualization version   GIF version

Theorem fodomfi2 10129
Description: Onto functions define dominance when a finite number of choices need to be made. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fodomfi2 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)

Proof of Theorem fodomfi2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fofn 6836 . . . 4 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
213ad2ant3 1135 . . 3 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐹 Fn 𝐴)
3 forn 6837 . . . . 5 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
4 eqimss2 4068 . . . . 5 (ran 𝐹 = 𝐵𝐵 ⊆ ran 𝐹)
53, 4syl 17 . . . 4 (𝐹:𝐴onto𝐵𝐵 ⊆ ran 𝐹)
653ad2ant3 1135 . . 3 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ⊆ ran 𝐹)
7 simp2 1137 . . 3 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵 ∈ Fin)
8 fipreima 9428 . . 3 ((𝐹 Fn 𝐴𝐵 ⊆ ran 𝐹𝐵 ∈ Fin) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝐹𝑥) = 𝐵)
92, 6, 7, 8syl3anc 1371 . 2 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝐹𝑥) = 𝐵)
10 elinel2 4225 . . . . . . . 8 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ Fin)
1110adantl 481 . . . . . . 7 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
12 finnum 10017 . . . . . . 7 (𝑥 ∈ Fin → 𝑥 ∈ dom card)
1311, 12syl 17 . . . . . 6 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ dom card)
14 simpl3 1193 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴onto𝐵)
15 fofun 6835 . . . . . . . 8 (𝐹:𝐴onto𝐵 → Fun 𝐹)
1614, 15syl 17 . . . . . . 7 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → Fun 𝐹)
17 elinel1 4224 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
1817elpwid 4631 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
1918adantl 481 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
20 fof 6834 . . . . . . . . 9 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
21 fdm 6756 . . . . . . . . 9 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2214, 20, 213syl 18 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → dom 𝐹 = 𝐴)
2319, 22sseqtrrd 4050 . . . . . . 7 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ⊆ dom 𝐹)
24 fores 6844 . . . . . . 7 ((Fun 𝐹𝑥 ⊆ dom 𝐹) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
2516, 23, 24syl2anc 583 . . . . . 6 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑥):𝑥onto→(𝐹𝑥))
26 fodomnum 10126 . . . . . 6 (𝑥 ∈ dom card → ((𝐹𝑥):𝑥onto→(𝐹𝑥) → (𝐹𝑥) ≼ 𝑥))
2713, 25, 26sylc 65 . . . . 5 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑥) ≼ 𝑥)
28 simpl1 1191 . . . . . 6 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
29 ssdomg 9060 . . . . . 6 (𝐴𝑉 → (𝑥𝐴𝑥𝐴))
3028, 19, 29sylc 65 . . . . 5 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
31 domtr 9067 . . . . 5 (((𝐹𝑥) ≼ 𝑥𝑥𝐴) → (𝐹𝑥) ≼ 𝐴)
3227, 30, 31syl2anc 583 . . . 4 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑥) ≼ 𝐴)
33 breq1 5169 . . . 4 ((𝐹𝑥) = 𝐵 → ((𝐹𝑥) ≼ 𝐴𝐵𝐴))
3432, 33syl5ibcom 245 . . 3 (((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑥) = 𝐵𝐵𝐴))
3534rexlimdva 3161 . 2 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝐹𝑥) = 𝐵𝐵𝐴))
369, 35mpd 15 1 ((𝐴𝑉𝐵 ∈ Fin ∧ 𝐹:𝐴onto𝐵) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  cin 3975  wss 3976  𝒫 cpw 4622   class class class wbr 5166  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  ontowfo 6571  cdom 9001  Fincfn 9003  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-fin 9007  df-card 10008  df-acn 10011
This theorem is referenced by:  wdomfil  10130
  Copyright terms: Public domain W3C validator