| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfres | Structured version Visualization version GIF version | ||
| Description: The restriction of sigma-measurable function is sigma-measurable. Proposition 121E (h) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfres.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfres.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| smfres.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| smfres | ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 2 | smfres.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 3 | inss1 4187 | . . . 4 ⊢ (dom 𝐹 ∩ 𝐴) ⊆ dom 𝐹 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) ⊆ dom 𝐹) |
| 5 | smfres.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
| 6 | eqid 2731 | . . . 4 ⊢ dom 𝐹 = dom 𝐹 | |
| 7 | 2, 5, 6 | smfdmss 46770 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 8 | 4, 7 | sstrd 3945 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) ⊆ ∪ 𝑆) |
| 9 | 2, 5, 6 | smff 46769 | . . 3 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 10 | fresin 6692 | . . 3 ⊢ (𝐹:dom 𝐹⟶ℝ → (𝐹 ↾ 𝐴):(dom 𝐹 ∩ 𝐴)⟶ℝ) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐴):(dom 𝐹 ∩ 𝐴)⟶ℝ) |
| 12 | ovexd 7381 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑆 ↾t dom 𝐹) ∈ V) | |
| 13 | smfres.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐴 ∈ 𝑉) |
| 15 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
| 16 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
| 17 | mnfxr 11166 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → -∞ ∈ ℝ*) |
| 19 | rexr 11155 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
| 20 | 19 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
| 21 | 15, 16, 6, 18, 20 | smfpimioo 46824 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
| 22 | eqid 2731 | . . . 4 ⊢ ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) | |
| 23 | 12, 14, 21, 22 | elrestd 45144 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) ∈ ((𝑆 ↾t dom 𝐹) ↾t 𝐴)) |
| 24 | 9 | ffund 6655 | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐹) |
| 25 | respreima 6999 | . . . . . . . 8 ⊢ (Fun 𝐹 → (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴)) | |
| 26 | 24, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴)) |
| 27 | 26 | eqcomd 2737 | . . . . . 6 ⊢ (𝜑 → ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎))) |
| 28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎))) |
| 29 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝐹 ↾ 𝐴):(dom 𝐹 ∩ 𝐴)⟶ℝ) |
| 30 | 29, 20 | preimaioomnf 46756 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎)) = {𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎}) |
| 31 | 28, 30 | eqtr2d 2767 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎} = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴)) |
| 32 | 5 | dmexd 7833 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 33 | restco 23077 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V ∧ 𝐴 ∈ 𝑉) → ((𝑆 ↾t dom 𝐹) ↾t 𝐴) = (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) | |
| 34 | 2, 32, 13, 33 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ((𝑆 ↾t dom 𝐹) ↾t 𝐴) = (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) |
| 35 | 34 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ((𝑆 ↾t dom 𝐹) ↾t 𝐴) = (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) |
| 36 | 35 | eqcomd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑆 ↾t (dom 𝐹 ∩ 𝐴)) = ((𝑆 ↾t dom 𝐹) ↾t 𝐴)) |
| 37 | 31, 36 | eleq12d 2825 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (dom 𝐹 ∩ 𝐴)) ↔ ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) ∈ ((𝑆 ↾t dom 𝐹) ↾t 𝐴))) |
| 38 | 23, 37 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) |
| 39 | 1, 2, 8, 11, 38 | issmfd 46772 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 ∪ cuni 4859 class class class wbr 5091 ◡ccnv 5615 dom cdm 5616 ↾ cres 5618 “ cima 5619 Fun wfun 6475 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝcr 11002 -∞cmnf 11141 ℝ*cxr 11142 < clt 11143 (,)cioo 13242 ↾t crest 17321 SAlgcsalg 46345 SMblFncsmblfn 46732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cc 10323 ax-ac2 10351 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-card 9829 df-acn 9832 df-ac 10004 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-ioo 13246 df-ico 13248 df-fl 13693 df-rest 17323 df-salg 46346 df-smblfn 46733 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |