Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfres | Structured version Visualization version GIF version |
Description: The restriction of sigma-measurable function is sigma-measurable. Proposition 121E (h) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfres.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfres.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smfres.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
smfres | ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑎𝜑 | |
2 | smfres.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
3 | inss1 4159 | . . . 4 ⊢ (dom 𝐹 ∩ 𝐴) ⊆ dom 𝐹 | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) ⊆ dom 𝐹) |
5 | smfres.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
6 | eqid 2738 | . . . 4 ⊢ dom 𝐹 = dom 𝐹 | |
7 | 2, 5, 6 | smfdmss 44156 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
8 | 4, 7 | sstrd 3927 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) ⊆ ∪ 𝑆) |
9 | 2, 5, 6 | smff 44155 | . . 3 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
10 | fresin 6627 | . . 3 ⊢ (𝐹:dom 𝐹⟶ℝ → (𝐹 ↾ 𝐴):(dom 𝐹 ∩ 𝐴)⟶ℝ) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐴):(dom 𝐹 ∩ 𝐴)⟶ℝ) |
12 | ovexd 7290 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑆 ↾t dom 𝐹) ∈ V) | |
13 | smfres.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐴 ∈ 𝑉) |
15 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
16 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
17 | mnfxr 10963 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → -∞ ∈ ℝ*) |
19 | rexr 10952 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
20 | 19 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
21 | 15, 16, 6, 18, 20 | smfpimioo 44208 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
22 | eqid 2738 | . . . 4 ⊢ ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) | |
23 | 12, 14, 21, 22 | elrestd 42547 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) ∈ ((𝑆 ↾t dom 𝐹) ↾t 𝐴)) |
24 | 9 | ffund 6588 | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐹) |
25 | respreima 6925 | . . . . . . . 8 ⊢ (Fun 𝐹 → (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴)) | |
26 | 24, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴)) |
27 | 26 | eqcomd 2744 | . . . . . 6 ⊢ (𝜑 → ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎))) |
28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎))) |
29 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝐹 ↾ 𝐴):(dom 𝐹 ∩ 𝐴)⟶ℝ) |
30 | 29, 20 | preimaioomnf 44143 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎)) = {𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎}) |
31 | 28, 30 | eqtr2d 2779 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎} = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴)) |
32 | 5 | dmexd 7726 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 ∈ V) |
33 | restco 22223 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V ∧ 𝐴 ∈ 𝑉) → ((𝑆 ↾t dom 𝐹) ↾t 𝐴) = (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) | |
34 | 2, 32, 13, 33 | syl3anc 1369 | . . . . . 6 ⊢ (𝜑 → ((𝑆 ↾t dom 𝐹) ↾t 𝐴) = (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) |
35 | 34 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ((𝑆 ↾t dom 𝐹) ↾t 𝐴) = (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) |
36 | 35 | eqcomd 2744 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑆 ↾t (dom 𝐹 ∩ 𝐴)) = ((𝑆 ↾t dom 𝐹) ↾t 𝐴)) |
37 | 31, 36 | eleq12d 2833 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (dom 𝐹 ∩ 𝐴)) ↔ ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) ∈ ((𝑆 ↾t dom 𝐹) ↾t 𝐴))) |
38 | 23, 37 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) |
39 | 1, 2, 8, 11, 38 | issmfd 44158 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ∪ cuni 4836 class class class wbr 5070 ◡ccnv 5579 dom cdm 5580 ↾ cres 5582 “ cima 5583 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 (,)cioo 13008 ↾t crest 17048 SAlgcsalg 43739 SMblFncsmblfn 44123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-card 9628 df-acn 9631 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-ioo 13012 df-ico 13014 df-fl 13440 df-rest 17050 df-salg 43740 df-smblfn 44124 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |