Step | Hyp | Ref
| Expression |
1 | | nfv 1915 |
. 2
β’
β²ππ |
2 | | smfres.s |
. 2
β’ (π β π β SAlg) |
3 | | inss1 4229 |
. . . 4
β’ (dom
πΉ β© π΄) β dom πΉ |
4 | 3 | a1i 11 |
. . 3
β’ (π β (dom πΉ β© π΄) β dom πΉ) |
5 | | smfres.f |
. . . 4
β’ (π β πΉ β (SMblFnβπ)) |
6 | | eqid 2730 |
. . . 4
β’ dom πΉ = dom πΉ |
7 | 2, 5, 6 | smfdmss 45749 |
. . 3
β’ (π β dom πΉ β βͺ π) |
8 | 4, 7 | sstrd 3993 |
. 2
β’ (π β (dom πΉ β© π΄) β βͺ π) |
9 | 2, 5, 6 | smff 45748 |
. . 3
β’ (π β πΉ:dom πΉβΆβ) |
10 | | fresin 6761 |
. . 3
β’ (πΉ:dom πΉβΆβ β (πΉ βΎ π΄):(dom πΉ β© π΄)βΆβ) |
11 | 9, 10 | syl 17 |
. 2
β’ (π β (πΉ βΎ π΄):(dom πΉ β© π΄)βΆβ) |
12 | | ovexd 7448 |
. . . 4
β’ ((π β§ π β β) β (π βΎt dom πΉ) β V) |
13 | | smfres.a |
. . . . 5
β’ (π β π΄ β π) |
14 | 13 | adantr 479 |
. . . 4
β’ ((π β§ π β β) β π΄ β π) |
15 | 2 | adantr 479 |
. . . . 5
β’ ((π β§ π β β) β π β SAlg) |
16 | 5 | adantr 479 |
. . . . 5
β’ ((π β§ π β β) β πΉ β (SMblFnβπ)) |
17 | | mnfxr 11277 |
. . . . . 6
β’ -β
β β* |
18 | 17 | a1i 11 |
. . . . 5
β’ ((π β§ π β β) β -β β
β*) |
19 | | rexr 11266 |
. . . . . 6
β’ (π β β β π β
β*) |
20 | 19 | adantl 480 |
. . . . 5
β’ ((π β§ π β β) β π β β*) |
21 | 15, 16, 6, 18, 20 | smfpimioo 45803 |
. . . 4
β’ ((π β§ π β β) β (β‘πΉ β (-β(,)π)) β (π βΎt dom πΉ)) |
22 | | eqid 2730 |
. . . 4
β’ ((β‘πΉ β (-β(,)π)) β© π΄) = ((β‘πΉ β (-β(,)π)) β© π΄) |
23 | 12, 14, 21, 22 | elrestd 44100 |
. . 3
β’ ((π β§ π β β) β ((β‘πΉ β (-β(,)π)) β© π΄) β ((π βΎt dom πΉ) βΎt π΄)) |
24 | 9 | ffund 6722 |
. . . . . . . 8
β’ (π β Fun πΉ) |
25 | | respreima 7068 |
. . . . . . . 8
β’ (Fun
πΉ β (β‘(πΉ βΎ π΄) β (-β(,)π)) = ((β‘πΉ β (-β(,)π)) β© π΄)) |
26 | 24, 25 | syl 17 |
. . . . . . 7
β’ (π β (β‘(πΉ βΎ π΄) β (-β(,)π)) = ((β‘πΉ β (-β(,)π)) β© π΄)) |
27 | 26 | eqcomd 2736 |
. . . . . 6
β’ (π β ((β‘πΉ β (-β(,)π)) β© π΄) = (β‘(πΉ βΎ π΄) β (-β(,)π))) |
28 | 27 | adantr 479 |
. . . . 5
β’ ((π β§ π β β) β ((β‘πΉ β (-β(,)π)) β© π΄) = (β‘(πΉ βΎ π΄) β (-β(,)π))) |
29 | 11 | adantr 479 |
. . . . . 6
β’ ((π β§ π β β) β (πΉ βΎ π΄):(dom πΉ β© π΄)βΆβ) |
30 | 29, 20 | preimaioomnf 45735 |
. . . . 5
β’ ((π β§ π β β) β (β‘(πΉ βΎ π΄) β (-β(,)π)) = {π₯ β (dom πΉ β© π΄) β£ ((πΉ βΎ π΄)βπ₯) < π}) |
31 | 28, 30 | eqtr2d 2771 |
. . . 4
β’ ((π β§ π β β) β {π₯ β (dom πΉ β© π΄) β£ ((πΉ βΎ π΄)βπ₯) < π} = ((β‘πΉ β (-β(,)π)) β© π΄)) |
32 | 5 | dmexd 7900 |
. . . . . . 7
β’ (π β dom πΉ β V) |
33 | | restco 22890 |
. . . . . . 7
β’ ((π β SAlg β§ dom πΉ β V β§ π΄ β π) β ((π βΎt dom πΉ) βΎt π΄) = (π βΎt (dom πΉ β© π΄))) |
34 | 2, 32, 13, 33 | syl3anc 1369 |
. . . . . 6
β’ (π β ((π βΎt dom πΉ) βΎt π΄) = (π βΎt (dom πΉ β© π΄))) |
35 | 34 | adantr 479 |
. . . . 5
β’ ((π β§ π β β) β ((π βΎt dom πΉ) βΎt π΄) = (π βΎt (dom πΉ β© π΄))) |
36 | 35 | eqcomd 2736 |
. . . 4
β’ ((π β§ π β β) β (π βΎt (dom πΉ β© π΄)) = ((π βΎt dom πΉ) βΎt π΄)) |
37 | 31, 36 | eleq12d 2825 |
. . 3
β’ ((π β§ π β β) β ({π₯ β (dom πΉ β© π΄) β£ ((πΉ βΎ π΄)βπ₯) < π} β (π βΎt (dom πΉ β© π΄)) β ((β‘πΉ β (-β(,)π)) β© π΄) β ((π βΎt dom πΉ) βΎt π΄))) |
38 | 23, 37 | mpbird 256 |
. 2
β’ ((π β§ π β β) β {π₯ β (dom πΉ β© π΄) β£ ((πΉ βΎ π΄)βπ₯) < π} β (π βΎt (dom πΉ β© π΄))) |
39 | 1, 2, 8, 11, 38 | issmfd 45751 |
1
β’ (π β (πΉ βΎ π΄) β (SMblFnβπ)) |