Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfres Structured version   Visualization version   GIF version

Theorem smfres 42502
Description: The restriction of sigma-measurable function is sigma-measurable. Proposition 121E (h) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfres.s (𝜑𝑆 ∈ SAlg)
smfres.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfres.a (𝜑𝐴𝑉)
Assertion
Ref Expression
smfres (𝜑 → (𝐹𝐴) ∈ (SMblFn‘𝑆))

Proof of Theorem smfres
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1873 . 2 𝑎𝜑
2 smfres.s . 2 (𝜑𝑆 ∈ SAlg)
3 inss1 4092 . . . 4 (dom 𝐹𝐴) ⊆ dom 𝐹
43a1i 11 . . 3 (𝜑 → (dom 𝐹𝐴) ⊆ dom 𝐹)
5 smfres.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
6 eqid 2778 . . . 4 dom 𝐹 = dom 𝐹
72, 5, 6smfdmss 42447 . . 3 (𝜑 → dom 𝐹 𝑆)
84, 7sstrd 3868 . 2 (𝜑 → (dom 𝐹𝐴) ⊆ 𝑆)
92, 5, 6smff 42446 . . 3 (𝜑𝐹:dom 𝐹⟶ℝ)
10 fresin 6376 . . 3 (𝐹:dom 𝐹⟶ℝ → (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ)
119, 10syl 17 . 2 (𝜑 → (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ)
12 ovexd 7010 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝑆t dom 𝐹) ∈ V)
13 smfres.a . . . . 5 (𝜑𝐴𝑉)
1413adantr 473 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐴𝑉)
152adantr 473 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
165adantr 473 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
17 mnfxr 10498 . . . . . 6 -∞ ∈ ℝ*
1817a1i 11 . . . . 5 ((𝜑𝑎 ∈ ℝ) → -∞ ∈ ℝ*)
19 rexr 10486 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
2019adantl 474 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
2115, 16, 6, 18, 20smfpimioo 42499 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
22 eqid 2778 . . . 4 ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴)
2312, 14, 21, 22elrestd 40803 . . 3 ((𝜑𝑎 ∈ ℝ) → ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) ∈ ((𝑆t dom 𝐹) ↾t 𝐴))
249ffund 6348 . . . . . . . 8 (𝜑 → Fun 𝐹)
25 respreima 6661 . . . . . . . 8 (Fun 𝐹 → ((𝐹𝐴) “ (-∞(,)𝑎)) = ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴))
2624, 25syl 17 . . . . . . 7 (𝜑 → ((𝐹𝐴) “ (-∞(,)𝑎)) = ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴))
2726eqcomd 2784 . . . . . 6 (𝜑 → ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = ((𝐹𝐴) “ (-∞(,)𝑎)))
2827adantr 473 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = ((𝐹𝐴) “ (-∞(,)𝑎)))
2911adantr 473 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ)
3029, 20preimaioomnf 42434 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝐹𝐴) “ (-∞(,)𝑎)) = {𝑥 ∈ (dom 𝐹𝐴) ∣ ((𝐹𝐴)‘𝑥) < 𝑎})
3128, 30eqtr2d 2815 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (dom 𝐹𝐴) ∣ ((𝐹𝐴)‘𝑥) < 𝑎} = ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴))
325dmexd 7430 . . . . . . 7 (𝜑 → dom 𝐹 ∈ V)
33 restco 21476 . . . . . . 7 ((𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V ∧ 𝐴𝑉) → ((𝑆t dom 𝐹) ↾t 𝐴) = (𝑆t (dom 𝐹𝐴)))
342, 32, 13, 33syl3anc 1351 . . . . . 6 (𝜑 → ((𝑆t dom 𝐹) ↾t 𝐴) = (𝑆t (dom 𝐹𝐴)))
3534adantr 473 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝑆t dom 𝐹) ↾t 𝐴) = (𝑆t (dom 𝐹𝐴)))
3635eqcomd 2784 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝑆t (dom 𝐹𝐴)) = ((𝑆t dom 𝐹) ↾t 𝐴))
3731, 36eleq12d 2860 . . 3 ((𝜑𝑎 ∈ ℝ) → ({𝑥 ∈ (dom 𝐹𝐴) ∣ ((𝐹𝐴)‘𝑥) < 𝑎} ∈ (𝑆t (dom 𝐹𝐴)) ↔ ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) ∈ ((𝑆t dom 𝐹) ↾t 𝐴)))
3823, 37mpbird 249 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (dom 𝐹𝐴) ∣ ((𝐹𝐴)‘𝑥) < 𝑎} ∈ (𝑆t (dom 𝐹𝐴)))
391, 2, 8, 11, 38issmfd 42449 1 (𝜑 → (𝐹𝐴) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  {crab 3092  Vcvv 3415  cin 3828  wss 3829   cuni 4712   class class class wbr 4929  ccnv 5406  dom cdm 5407  cres 5409  cima 5410  Fun wfun 6182  wf 6184  cfv 6188  (class class class)co 6976  cr 10334  -∞cmnf 10472  *cxr 10473   < clt 10474  (,)cioo 12554  t crest 16550  SAlgcsalg 42030  SMblFncsmblfn 42414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cc 9655  ax-ac2 9683  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-inf 8702  df-card 9162  df-acn 9165  df-ac 9336  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-n0 11708  df-z 11794  df-uz 12059  df-q 12163  df-rp 12205  df-ioo 12558  df-ico 12560  df-fl 12977  df-rest 16552  df-salg 42031  df-smblfn 42415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator