| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfres | Structured version Visualization version GIF version | ||
| Description: The restriction of sigma-measurable function is sigma-measurable. Proposition 121E (h) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfres.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfres.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| smfres.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| smfres | ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 2 | smfres.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 3 | inss1 4186 | . . . 4 ⊢ (dom 𝐹 ∩ 𝐴) ⊆ dom 𝐹 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) ⊆ dom 𝐹) |
| 5 | smfres.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
| 6 | eqid 2733 | . . . 4 ⊢ dom 𝐹 = dom 𝐹 | |
| 7 | 2, 5, 6 | smfdmss 46855 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 8 | 4, 7 | sstrd 3941 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) ⊆ ∪ 𝑆) |
| 9 | 2, 5, 6 | smff 46854 | . . 3 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 10 | fresin 6697 | . . 3 ⊢ (𝐹:dom 𝐹⟶ℝ → (𝐹 ↾ 𝐴):(dom 𝐹 ∩ 𝐴)⟶ℝ) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐴):(dom 𝐹 ∩ 𝐴)⟶ℝ) |
| 12 | ovexd 7387 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑆 ↾t dom 𝐹) ∈ V) | |
| 13 | smfres.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐴 ∈ 𝑉) |
| 15 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
| 16 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
| 17 | mnfxr 11176 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → -∞ ∈ ℝ*) |
| 19 | rexr 11165 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
| 20 | 19 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
| 21 | 15, 16, 6, 18, 20 | smfpimioo 46909 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
| 22 | eqid 2733 | . . . 4 ⊢ ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) | |
| 23 | 12, 14, 21, 22 | elrestd 45229 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) ∈ ((𝑆 ↾t dom 𝐹) ↾t 𝐴)) |
| 24 | 9 | ffund 6660 | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐹) |
| 25 | respreima 7005 | . . . . . . . 8 ⊢ (Fun 𝐹 → (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴)) | |
| 26 | 24, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴)) |
| 27 | 26 | eqcomd 2739 | . . . . . 6 ⊢ (𝜑 → ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎))) |
| 28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎))) |
| 29 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝐹 ↾ 𝐴):(dom 𝐹 ∩ 𝐴)⟶ℝ) |
| 30 | 29, 20 | preimaioomnf 46841 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎)) = {𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎}) |
| 31 | 28, 30 | eqtr2d 2769 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎} = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴)) |
| 32 | 5 | dmexd 7839 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 33 | restco 23080 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V ∧ 𝐴 ∈ 𝑉) → ((𝑆 ↾t dom 𝐹) ↾t 𝐴) = (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) | |
| 34 | 2, 32, 13, 33 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ((𝑆 ↾t dom 𝐹) ↾t 𝐴) = (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) |
| 35 | 34 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ((𝑆 ↾t dom 𝐹) ↾t 𝐴) = (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) |
| 36 | 35 | eqcomd 2739 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑆 ↾t (dom 𝐹 ∩ 𝐴)) = ((𝑆 ↾t dom 𝐹) ↾t 𝐴)) |
| 37 | 31, 36 | eleq12d 2827 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (dom 𝐹 ∩ 𝐴)) ↔ ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) ∈ ((𝑆 ↾t dom 𝐹) ↾t 𝐴))) |
| 38 | 23, 37 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) |
| 39 | 1, 2, 8, 11, 38 | issmfd 46857 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 ∪ cuni 4858 class class class wbr 5093 ◡ccnv 5618 dom cdm 5619 ↾ cres 5621 “ cima 5622 Fun wfun 6480 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 -∞cmnf 11151 ℝ*cxr 11152 < clt 11153 (,)cioo 13247 ↾t crest 17326 SAlgcsalg 46430 SMblFncsmblfn 46817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cc 10333 ax-ac2 10361 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-card 9839 df-acn 9842 df-ac 10014 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-ioo 13251 df-ico 13253 df-fl 13698 df-rest 17328 df-salg 46431 df-smblfn 46818 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |