Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfres Structured version   Visualization version   GIF version

Theorem smfres 43288
Description: The restriction of sigma-measurable function is sigma-measurable. Proposition 121E (h) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfres.s (𝜑𝑆 ∈ SAlg)
smfres.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfres.a (𝜑𝐴𝑉)
Assertion
Ref Expression
smfres (𝜑 → (𝐹𝐴) ∈ (SMblFn‘𝑆))

Proof of Theorem smfres
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1916 . 2 𝑎𝜑
2 smfres.s . 2 (𝜑𝑆 ∈ SAlg)
3 inss1 4190 . . . 4 (dom 𝐹𝐴) ⊆ dom 𝐹
43a1i 11 . . 3 (𝜑 → (dom 𝐹𝐴) ⊆ dom 𝐹)
5 smfres.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
6 eqid 2824 . . . 4 dom 𝐹 = dom 𝐹
72, 5, 6smfdmss 43233 . . 3 (𝜑 → dom 𝐹 𝑆)
84, 7sstrd 3963 . 2 (𝜑 → (dom 𝐹𝐴) ⊆ 𝑆)
92, 5, 6smff 43232 . . 3 (𝜑𝐹:dom 𝐹⟶ℝ)
10 fresin 6536 . . 3 (𝐹:dom 𝐹⟶ℝ → (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ)
119, 10syl 17 . 2 (𝜑 → (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ)
12 ovexd 7181 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝑆t dom 𝐹) ∈ V)
13 smfres.a . . . . 5 (𝜑𝐴𝑉)
1413adantr 484 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐴𝑉)
152adantr 484 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
165adantr 484 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
17 mnfxr 10692 . . . . . 6 -∞ ∈ ℝ*
1817a1i 11 . . . . 5 ((𝜑𝑎 ∈ ℝ) → -∞ ∈ ℝ*)
19 rexr 10681 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
2019adantl 485 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
2115, 16, 6, 18, 20smfpimioo 43285 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (-∞(,)𝑎)) ∈ (𝑆t dom 𝐹))
22 eqid 2824 . . . 4 ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴)
2312, 14, 21, 22elrestd 41606 . . 3 ((𝜑𝑎 ∈ ℝ) → ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) ∈ ((𝑆t dom 𝐹) ↾t 𝐴))
249ffund 6507 . . . . . . . 8 (𝜑 → Fun 𝐹)
25 respreima 6825 . . . . . . . 8 (Fun 𝐹 → ((𝐹𝐴) “ (-∞(,)𝑎)) = ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴))
2624, 25syl 17 . . . . . . 7 (𝜑 → ((𝐹𝐴) “ (-∞(,)𝑎)) = ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴))
2726eqcomd 2830 . . . . . 6 (𝜑 → ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = ((𝐹𝐴) “ (-∞(,)𝑎)))
2827adantr 484 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = ((𝐹𝐴) “ (-∞(,)𝑎)))
2911adantr 484 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ)
3029, 20preimaioomnf 43220 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝐹𝐴) “ (-∞(,)𝑎)) = {𝑥 ∈ (dom 𝐹𝐴) ∣ ((𝐹𝐴)‘𝑥) < 𝑎})
3128, 30eqtr2d 2860 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (dom 𝐹𝐴) ∣ ((𝐹𝐴)‘𝑥) < 𝑎} = ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴))
325dmexd 7607 . . . . . . 7 (𝜑 → dom 𝐹 ∈ V)
33 restco 21767 . . . . . . 7 ((𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V ∧ 𝐴𝑉) → ((𝑆t dom 𝐹) ↾t 𝐴) = (𝑆t (dom 𝐹𝐴)))
342, 32, 13, 33syl3anc 1368 . . . . . 6 (𝜑 → ((𝑆t dom 𝐹) ↾t 𝐴) = (𝑆t (dom 𝐹𝐴)))
3534adantr 484 . . . . 5 ((𝜑𝑎 ∈ ℝ) → ((𝑆t dom 𝐹) ↾t 𝐴) = (𝑆t (dom 𝐹𝐴)))
3635eqcomd 2830 . . . 4 ((𝜑𝑎 ∈ ℝ) → (𝑆t (dom 𝐹𝐴)) = ((𝑆t dom 𝐹) ↾t 𝐴))
3731, 36eleq12d 2910 . . 3 ((𝜑𝑎 ∈ ℝ) → ({𝑥 ∈ (dom 𝐹𝐴) ∣ ((𝐹𝐴)‘𝑥) < 𝑎} ∈ (𝑆t (dom 𝐹𝐴)) ↔ ((𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) ∈ ((𝑆t dom 𝐹) ↾t 𝐴)))
3823, 37mpbird 260 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (dom 𝐹𝐴) ∣ ((𝐹𝐴)‘𝑥) < 𝑎} ∈ (𝑆t (dom 𝐹𝐴)))
391, 2, 8, 11, 38issmfd 43235 1 (𝜑 → (𝐹𝐴) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  {crab 3137  Vcvv 3480  cin 3918  wss 3919   cuni 4825   class class class wbr 5053  ccnv 5542  dom cdm 5543  cres 5545  cima 5546  Fun wfun 6338  wf 6340  cfv 6344  (class class class)co 7146  cr 10530  -∞cmnf 10667  *cxr 10668   < clt 10669  (,)cioo 12733  t crest 16692  SAlgcsalg 42816  SMblFncsmblfn 43200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-inf2 9097  ax-cc 9851  ax-ac2 9879  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8899  df-inf 8900  df-card 9361  df-acn 9364  df-ac 9536  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11893  df-z 11977  df-uz 12239  df-q 12344  df-rp 12385  df-ioo 12737  df-ico 12739  df-fl 13164  df-rest 16694  df-salg 42817  df-smblfn 43201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator