| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0ssre | Structured version Visualization version GIF version | ||
| Description: If a sum of nonnegative extended reals is real, than any subsum is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0less.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| sge0less.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| sge0ssre.re | ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) |
| Ref | Expression |
|---|---|
| sge0ssre | ⊢ (𝜑 → (Σ^‘(𝐹 ↾ 𝑌)) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0less.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | inex1g 5289 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∩ 𝑌) ∈ V) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝑋 ∩ 𝑌) ∈ V) |
| 4 | sge0less.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
| 5 | fresin 6747 | . . . 4 ⊢ (𝐹:𝑋⟶(0[,]+∞) → (𝐹 ↾ 𝑌):(𝑋 ∩ 𝑌)⟶(0[,]+∞)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝑌):(𝑋 ∩ 𝑌)⟶(0[,]+∞)) |
| 7 | 3, 6 | sge0xrcl 46414 | . 2 ⊢ (𝜑 → (Σ^‘(𝐹 ↾ 𝑌)) ∈ ℝ*) |
| 8 | sge0ssre.re | . 2 ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) | |
| 9 | mnfxr 11292 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ ∈ ℝ*) |
| 11 | 0xr 11282 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 13 | mnflt0 13141 | . . . 4 ⊢ -∞ < 0 | |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ < 0) |
| 15 | 3, 6 | sge0ge0 46413 | . . 3 ⊢ (𝜑 → 0 ≤ (Σ^‘(𝐹 ↾ 𝑌))) |
| 16 | 10, 12, 7, 14, 15 | xrltletrd 13177 | . 2 ⊢ (𝜑 → -∞ < (Σ^‘(𝐹 ↾ 𝑌))) |
| 17 | 1, 4 | sge0less 46421 | . 2 ⊢ (𝜑 → (Σ^‘(𝐹 ↾ 𝑌)) ≤ (Σ^‘𝐹)) |
| 18 | xrre 13185 | . 2 ⊢ ((((Σ^‘(𝐹 ↾ 𝑌)) ∈ ℝ* ∧ (Σ^‘𝐹) ∈ ℝ) ∧ (-∞ < (Σ^‘(𝐹 ↾ 𝑌)) ∧ (Σ^‘(𝐹 ↾ 𝑌)) ≤ (Σ^‘𝐹))) → (Σ^‘(𝐹 ↾ 𝑌)) ∈ ℝ) | |
| 19 | 7, 8, 16, 17, 18 | syl22anc 838 | 1 ⊢ (𝜑 → (Σ^‘(𝐹 ↾ 𝑌)) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 class class class wbr 5119 ↾ cres 5656 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 +∞cpnf 11266 -∞cmnf 11267 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 [,]cicc 13365 Σ^csumge0 46391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-sumge0 46392 |
| This theorem is referenced by: sge0ssrempt 46434 sge0resplit 46435 sge0split 46438 |
| Copyright terms: Public domain | W3C validator |