Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ssre Structured version   Visualization version   GIF version

Theorem sge0ssre 46505
Description: If a sum of nonnegative extended reals is real, than any subsum is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0less.x (𝜑𝑋𝑉)
sge0less.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0ssre.re (𝜑 → (Σ^𝐹) ∈ ℝ)
Assertion
Ref Expression
sge0ssre (𝜑 → (Σ^‘(𝐹𝑌)) ∈ ℝ)

Proof of Theorem sge0ssre
StepHypRef Expression
1 sge0less.x . . . 4 (𝜑𝑋𝑉)
2 inex1g 5255 . . . 4 (𝑋𝑉 → (𝑋𝑌) ∈ V)
31, 2syl 17 . . 3 (𝜑 → (𝑋𝑌) ∈ V)
4 sge0less.f . . . 4 (𝜑𝐹:𝑋⟶(0[,]+∞))
5 fresin 6692 . . . 4 (𝐹:𝑋⟶(0[,]+∞) → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
64, 5syl 17 . . 3 (𝜑 → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
73, 6sge0xrcl 46493 . 2 (𝜑 → (Σ^‘(𝐹𝑌)) ∈ ℝ*)
8 sge0ssre.re . 2 (𝜑 → (Σ^𝐹) ∈ ℝ)
9 mnfxr 11169 . . . 4 -∞ ∈ ℝ*
109a1i 11 . . 3 (𝜑 → -∞ ∈ ℝ*)
11 0xr 11159 . . . 4 0 ∈ ℝ*
1211a1i 11 . . 3 (𝜑 → 0 ∈ ℝ*)
13 mnflt0 13024 . . . 4 -∞ < 0
1413a1i 11 . . 3 (𝜑 → -∞ < 0)
153, 6sge0ge0 46492 . . 3 (𝜑 → 0 ≤ (Σ^‘(𝐹𝑌)))
1610, 12, 7, 14, 15xrltletrd 13060 . 2 (𝜑 → -∞ < (Σ^‘(𝐹𝑌)))
171, 4sge0less 46500 . 2 (𝜑 → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
18 xrre 13068 . 2 ((((Σ^‘(𝐹𝑌)) ∈ ℝ* ∧ (Σ^𝐹) ∈ ℝ) ∧ (-∞ < (Σ^‘(𝐹𝑌)) ∧ (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))) → (Σ^‘(𝐹𝑌)) ∈ ℝ)
197, 8, 16, 17, 18syl22anc 838 1 (𝜑 → (Σ^‘(𝐹𝑌)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  cin 3896   class class class wbr 5089  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147  [,]cicc 13248  Σ^csumge0 46470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-sumge0 46471
This theorem is referenced by:  sge0ssrempt  46513  sge0resplit  46514  sge0split  46517
  Copyright terms: Public domain W3C validator