MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcresi Structured version   Visualization version   GIF version

Theorem limcresi 25857
Description: Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcresi (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)

Proof of Theorem limcresi
Dummy variables 𝑣 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 25846 . . . . . . 7 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
21simp1d 1142 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐹:dom 𝐹⟶ℂ)
31simp2d 1143 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → dom 𝐹 ⊆ ℂ)
41simp3d 1144 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐵 ∈ ℂ)
5 eqid 2734 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
62, 3, 4, 5ellimc2 25849 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢)))))
76ibi 267 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢))))
8 inss2 4218 . . . . . . . . . . . . 13 (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ ((dom 𝐹𝐶) ∖ {𝐵})
9 difss 4116 . . . . . . . . . . . . . 14 ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹𝐶)
10 inss2 4218 . . . . . . . . . . . . . 14 (dom 𝐹𝐶) ⊆ 𝐶
119, 10sstri 3973 . . . . . . . . . . . . 13 ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ 𝐶
128, 11sstri 3973 . . . . . . . . . . . 12 (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ 𝐶
13 resima2 6014 . . . . . . . . . . . 12 ((𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ 𝐶 → ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) = (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))))
1412, 13ax-mp 5 . . . . . . . . . . 11 ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) = (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})))
15 inss1 4217 . . . . . . . . . . . . 13 (dom 𝐹𝐶) ⊆ dom 𝐹
16 ssdif 4124 . . . . . . . . . . . . 13 ((dom 𝐹𝐶) ⊆ dom 𝐹 → ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹 ∖ {𝐵}))
1715, 16ax-mp 5 . . . . . . . . . . . 12 ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹 ∖ {𝐵})
18 sslin 4223 . . . . . . . . . . . 12 (((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹 ∖ {𝐵}) → (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})))
19 imass2 6100 . . . . . . . . . . . 12 ((𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})) → (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))))
2017, 18, 19mp2b 10 . . . . . . . . . . 11 (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})))
2114, 20eqsstri 4010 . . . . . . . . . 10 ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})))
22 sstr 3972 . . . . . . . . . 10 ((((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢) → ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)
2321, 22mpan 690 . . . . . . . . 9 ((𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢 → ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)
2423anim2i 617 . . . . . . . 8 ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢) → (𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))
2524reximi 3073 . . . . . . 7 (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))
2625imim2i 16 . . . . . 6 ((𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢)) → (𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)))
2726ralimi 3072 . . . . 5 (∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢)) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)))
2827anim2i 617 . . . 4 ((𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢))) → (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))))
297, 28syl 17 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))))
30 fresin 6757 . . . . 5 (𝐹:dom 𝐹⟶ℂ → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
312, 30syl 17 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
3215, 3sstrid 3975 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (dom 𝐹𝐶) ⊆ ℂ)
3331, 32, 4, 5ellimc2 25849 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)))))
3429, 33mpbird 257 . 2 (𝑥 ∈ (𝐹 lim 𝐵) → 𝑥 ∈ ((𝐹𝐶) lim 𝐵))
3534ssriv 3967 1 (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  cdif 3928  cin 3930  wss 3931  {csn 4606  dom cdm 5665  cres 5667  cima 5668  wf 6537  cfv 6541  (class class class)co 7413  cc 11135  TopOpenctopn 17438  fldccnfld 21327   lim climc 25834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fi 9433  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-plusg 17287  df-mulr 17288  df-starv 17289  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-rest 17439  df-topn 17440  df-topgen 17460  df-psmet 21319  df-xmet 21320  df-met 21321  df-bl 21322  df-mopn 21323  df-cnfld 21328  df-top 22849  df-topon 22866  df-topsp 22888  df-bases 22901  df-cnp 23183  df-xms 24276  df-ms 24277  df-limc 25838
This theorem is referenced by:  limciun  25866  dvres2lem  25882  dvidlem  25887  dvcnp2  25892  dvcnp2OLD  25893  dvcobr  25920  dvcobrOLD  25921  dvcnvlem  25951  lhop1lem  25989  lhop2  25991  lhop  25992  taylthlem2  26353  taylthlem2OLD  26354  fourierdlem32  46126  fourierdlem33  46127  fourierdlem46  46139  fourierdlem74  46167  fourierdlem75  46168  fourierdlem84  46177  fourierdlem85  46178  fourierdlem88  46181  fouriercnp  46213  fouriercn  46219
  Copyright terms: Public domain W3C validator