MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcresi Structured version   Visualization version   GIF version

Theorem limcresi 25920
Description: Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcresi (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)

Proof of Theorem limcresi
Dummy variables 𝑣 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 25909 . . . . . . 7 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
21simp1d 1143 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐹:dom 𝐹⟶ℂ)
31simp2d 1144 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → dom 𝐹 ⊆ ℂ)
41simp3d 1145 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐵 ∈ ℂ)
5 eqid 2737 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
62, 3, 4, 5ellimc2 25912 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢)))))
76ibi 267 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢))))
8 inss2 4238 . . . . . . . . . . . . 13 (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ ((dom 𝐹𝐶) ∖ {𝐵})
9 difss 4136 . . . . . . . . . . . . . 14 ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹𝐶)
10 inss2 4238 . . . . . . . . . . . . . 14 (dom 𝐹𝐶) ⊆ 𝐶
119, 10sstri 3993 . . . . . . . . . . . . 13 ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ 𝐶
128, 11sstri 3993 . . . . . . . . . . . 12 (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ 𝐶
13 resima2 6034 . . . . . . . . . . . 12 ((𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ 𝐶 → ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) = (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))))
1412, 13ax-mp 5 . . . . . . . . . . 11 ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) = (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})))
15 inss1 4237 . . . . . . . . . . . . 13 (dom 𝐹𝐶) ⊆ dom 𝐹
16 ssdif 4144 . . . . . . . . . . . . 13 ((dom 𝐹𝐶) ⊆ dom 𝐹 → ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹 ∖ {𝐵}))
1715, 16ax-mp 5 . . . . . . . . . . . 12 ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹 ∖ {𝐵})
18 sslin 4243 . . . . . . . . . . . 12 (((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹 ∖ {𝐵}) → (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})))
19 imass2 6120 . . . . . . . . . . . 12 ((𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})) → (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))))
2017, 18, 19mp2b 10 . . . . . . . . . . 11 (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})))
2114, 20eqsstri 4030 . . . . . . . . . 10 ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})))
22 sstr 3992 . . . . . . . . . 10 ((((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢) → ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)
2321, 22mpan 690 . . . . . . . . 9 ((𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢 → ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)
2423anim2i 617 . . . . . . . 8 ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢) → (𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))
2524reximi 3084 . . . . . . 7 (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))
2625imim2i 16 . . . . . 6 ((𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢)) → (𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)))
2726ralimi 3083 . . . . 5 (∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢)) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)))
2827anim2i 617 . . . 4 ((𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢))) → (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))))
297, 28syl 17 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))))
30 fresin 6777 . . . . 5 (𝐹:dom 𝐹⟶ℂ → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
312, 30syl 17 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
3215, 3sstrid 3995 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (dom 𝐹𝐶) ⊆ ℂ)
3331, 32, 4, 5ellimc2 25912 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)))))
3429, 33mpbird 257 . 2 (𝑥 ∈ (𝐹 lim 𝐵) → 𝑥 ∈ ((𝐹𝐶) lim 𝐵))
3534ssriv 3987 1 (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  cdif 3948  cin 3950  wss 3951  {csn 4626  dom cdm 5685  cres 5687  cima 5688  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  TopOpenctopn 17466  fldccnfld 21364   lim climc 25897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17467  df-topn 17468  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cnp 23236  df-xms 24330  df-ms 24331  df-limc 25901
This theorem is referenced by:  limciun  25929  dvres2lem  25945  dvidlem  25950  dvcnp2  25955  dvcnp2OLD  25956  dvcobr  25983  dvcobrOLD  25984  dvcnvlem  26014  lhop1lem  26052  lhop2  26054  lhop  26055  taylthlem2  26416  taylthlem2OLD  26417  fourierdlem32  46154  fourierdlem33  46155  fourierdlem46  46167  fourierdlem74  46195  fourierdlem75  46196  fourierdlem84  46205  fourierdlem85  46206  fourierdlem88  46209  fouriercnp  46241  fouriercn  46247
  Copyright terms: Public domain W3C validator