MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcresi Structured version   Visualization version   GIF version

Theorem limcresi 24954
Description: Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcresi (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)

Proof of Theorem limcresi
Dummy variables 𝑣 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 24943 . . . . . . 7 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
21simp1d 1140 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐹:dom 𝐹⟶ℂ)
31simp2d 1141 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → dom 𝐹 ⊆ ℂ)
41simp3d 1142 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐵 ∈ ℂ)
5 eqid 2738 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
62, 3, 4, 5ellimc2 24946 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢)))))
76ibi 266 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢))))
8 inss2 4160 . . . . . . . . . . . . 13 (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ ((dom 𝐹𝐶) ∖ {𝐵})
9 difss 4062 . . . . . . . . . . . . . 14 ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹𝐶)
10 inss2 4160 . . . . . . . . . . . . . 14 (dom 𝐹𝐶) ⊆ 𝐶
119, 10sstri 3926 . . . . . . . . . . . . 13 ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ 𝐶
128, 11sstri 3926 . . . . . . . . . . . 12 (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ 𝐶
13 resima2 5915 . . . . . . . . . . . 12 ((𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ 𝐶 → ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) = (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))))
1412, 13ax-mp 5 . . . . . . . . . . 11 ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) = (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})))
15 inss1 4159 . . . . . . . . . . . . 13 (dom 𝐹𝐶) ⊆ dom 𝐹
16 ssdif 4070 . . . . . . . . . . . . 13 ((dom 𝐹𝐶) ⊆ dom 𝐹 → ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹 ∖ {𝐵}))
1715, 16ax-mp 5 . . . . . . . . . . . 12 ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹 ∖ {𝐵})
18 sslin 4165 . . . . . . . . . . . 12 (((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹 ∖ {𝐵}) → (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})))
19 imass2 5999 . . . . . . . . . . . 12 ((𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})) → (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))))
2017, 18, 19mp2b 10 . . . . . . . . . . 11 (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})))
2114, 20eqsstri 3951 . . . . . . . . . 10 ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})))
22 sstr 3925 . . . . . . . . . 10 ((((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢) → ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)
2321, 22mpan 686 . . . . . . . . 9 ((𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢 → ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)
2423anim2i 616 . . . . . . . 8 ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢) → (𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))
2524reximi 3174 . . . . . . 7 (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))
2625imim2i 16 . . . . . 6 ((𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢)) → (𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)))
2726ralimi 3086 . . . . 5 (∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢)) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)))
2827anim2i 616 . . . 4 ((𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢))) → (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))))
297, 28syl 17 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))))
30 fresin 6627 . . . . 5 (𝐹:dom 𝐹⟶ℂ → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
312, 30syl 17 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
3215, 3sstrid 3928 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (dom 𝐹𝐶) ⊆ ℂ)
3331, 32, 4, 5ellimc2 24946 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)))))
3429, 33mpbird 256 . 2 (𝑥 ∈ (𝐹 lim 𝐵) → 𝑥 ∈ ((𝐹𝐶) lim 𝐵))
3534ssriv 3921 1 (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cdif 3880  cin 3882  wss 3883  {csn 4558  dom cdm 5580  cres 5582  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  TopOpenctopn 17049  fldccnfld 20510   lim climc 24931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cnp 22287  df-xms 23381  df-ms 23382  df-limc 24935
This theorem is referenced by:  limciun  24963  dvres2lem  24979  dvidlem  24984  dvcnp2  24989  dvcobr  25015  dvcnvlem  25045  lhop1lem  25082  lhop2  25084  lhop  25085  taylthlem2  25438  fourierdlem32  43570  fourierdlem33  43571  fourierdlem46  43583  fourierdlem74  43611  fourierdlem75  43612  fourierdlem84  43621  fourierdlem85  43622  fourierdlem88  43625  fouriercnp  43657  fouriercn  43663
  Copyright terms: Public domain W3C validator