MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcresi Structured version   Visualization version   GIF version

Theorem limcresi 25801
Description: Any limit of 𝐹 is also a limit of the restriction of 𝐹. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
limcresi (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)

Proof of Theorem limcresi
Dummy variables 𝑣 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 25790 . . . . . . 7 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
21simp1d 1140 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐹:dom 𝐹⟶ℂ)
31simp2d 1141 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → dom 𝐹 ⊆ ℂ)
41simp3d 1142 . . . . . 6 (𝑥 ∈ (𝐹 lim 𝐵) → 𝐵 ∈ ℂ)
5 eqid 2727 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
62, 3, 4, 5ellimc2 25793 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢)))))
76ibi 267 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢))))
8 inss2 4225 . . . . . . . . . . . . 13 (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ ((dom 𝐹𝐶) ∖ {𝐵})
9 difss 4127 . . . . . . . . . . . . . 14 ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹𝐶)
10 inss2 4225 . . . . . . . . . . . . . 14 (dom 𝐹𝐶) ⊆ 𝐶
119, 10sstri 3987 . . . . . . . . . . . . 13 ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ 𝐶
128, 11sstri 3987 . . . . . . . . . . . 12 (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ 𝐶
13 resima2 6014 . . . . . . . . . . . 12 ((𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ 𝐶 → ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) = (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))))
1412, 13ax-mp 5 . . . . . . . . . . 11 ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) = (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})))
15 inss1 4224 . . . . . . . . . . . . 13 (dom 𝐹𝐶) ⊆ dom 𝐹
16 ssdif 4135 . . . . . . . . . . . . 13 ((dom 𝐹𝐶) ⊆ dom 𝐹 → ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹 ∖ {𝐵}))
1715, 16ax-mp 5 . . . . . . . . . . . 12 ((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹 ∖ {𝐵})
18 sslin 4230 . . . . . . . . . . . 12 (((dom 𝐹𝐶) ∖ {𝐵}) ⊆ (dom 𝐹 ∖ {𝐵}) → (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})))
19 imass2 6100 . . . . . . . . . . . 12 ((𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵})) ⊆ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})) → (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))))
2017, 18, 19mp2b 10 . . . . . . . . . . 11 (𝐹 “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})))
2114, 20eqsstri 4012 . . . . . . . . . 10 ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵})))
22 sstr 3986 . . . . . . . . . 10 ((((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢) → ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)
2321, 22mpan 689 . . . . . . . . 9 ((𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢 → ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)
2423anim2i 616 . . . . . . . 8 ((𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢) → (𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))
2524reximi 3079 . . . . . . 7 (∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))
2625imim2i 16 . . . . . 6 ((𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢)) → (𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)))
2726ralimi 3078 . . . . 5 (∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢)) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)))
2827anim2i 616 . . . 4 ((𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ (𝐹 “ (𝑣 ∩ (dom 𝐹 ∖ {𝐵}))) ⊆ 𝑢))) → (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))))
297, 28syl 17 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢))))
30 fresin 6760 . . . . 5 (𝐹:dom 𝐹⟶ℂ → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
312, 30syl 17 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹𝐶):(dom 𝐹𝐶)⟶ℂ)
3215, 3sstrid 3989 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → (dom 𝐹𝐶) ⊆ ℂ)
3331, 32, 4, 5ellimc2 25793 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝑥 ∈ ((𝐹𝐶) lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑥𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐵𝑣 ∧ ((𝐹𝐶) “ (𝑣 ∩ ((dom 𝐹𝐶) ∖ {𝐵}))) ⊆ 𝑢)))))
3429, 33mpbird 257 . 2 (𝑥 ∈ (𝐹 lim 𝐵) → 𝑥 ∈ ((𝐹𝐶) lim 𝐵))
3534ssriv 3982 1 (𝐹 lim 𝐵) ⊆ ((𝐹𝐶) lim 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3056  wrex 3065  cdif 3941  cin 3943  wss 3944  {csn 4624  dom cdm 5672  cres 5674  cima 5675  wf 6538  cfv 6542  (class class class)co 7414  cc 11128  TopOpenctopn 17394  fldccnfld 21266   lim climc 25778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fi 9426  df-sup 9457  df-inf 9458  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-q 12955  df-rp 12999  df-xneg 13116  df-xadd 13117  df-xmul 13118  df-fz 13509  df-seq 13991  df-exp 14051  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-struct 17107  df-slot 17142  df-ndx 17154  df-base 17172  df-plusg 17237  df-mulr 17238  df-starv 17239  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-rest 17395  df-topn 17396  df-topgen 17416  df-psmet 21258  df-xmet 21259  df-met 21260  df-bl 21261  df-mopn 21262  df-cnfld 21267  df-top 22783  df-topon 22800  df-topsp 22822  df-bases 22836  df-cnp 23119  df-xms 24213  df-ms 24214  df-limc 25782
This theorem is referenced by:  limciun  25810  dvres2lem  25826  dvidlem  25831  dvcnp2  25836  dvcnp2OLD  25837  dvcobr  25864  dvcobrOLD  25865  dvcnvlem  25895  lhop1lem  25933  lhop2  25935  lhop  25936  taylthlem2  26296  taylthlem2OLD  26297  fourierdlem32  45450  fourierdlem33  45451  fourierdlem46  45463  fourierdlem74  45491  fourierdlem75  45492  fourierdlem84  45501  fourierdlem85  45502  fourierdlem88  45505  fouriercnp  45537  fouriercn  45543
  Copyright terms: Public domain W3C validator