![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgpupf | Structured version Visualization version GIF version |
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
frgpup.b | β’ π΅ = (Baseβπ») |
frgpup.n | β’ π = (invgβπ») |
frgpup.t | β’ π = (π¦ β πΌ, π§ β 2o β¦ if(π§ = β , (πΉβπ¦), (πβ(πΉβπ¦)))) |
frgpup.h | β’ (π β π» β Grp) |
frgpup.i | β’ (π β πΌ β π) |
frgpup.a | β’ (π β πΉ:πΌβΆπ΅) |
frgpup.w | β’ π = ( I βWord (πΌ Γ 2o)) |
frgpup.r | β’ βΌ = ( ~FG βπΌ) |
frgpup.g | β’ πΊ = (freeGrpβπΌ) |
frgpup.x | β’ π = (BaseβπΊ) |
frgpup.e | β’ πΈ = ran (π β π β¦ β¨[π] βΌ , (π» Ξ£g (π β π))β©) |
Ref | Expression |
---|---|
frgpupf | β’ (π β πΈ:πβΆπ΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup.e | . . . 4 β’ πΈ = ran (π β π β¦ β¨[π] βΌ , (π» Ξ£g (π β π))β©) | |
2 | frgpup.h | . . . . . 6 β’ (π β π» β Grp) | |
3 | 2 | grpmndd 18873 | . . . . 5 β’ (π β π» β Mnd) |
4 | frgpup.w | . . . . . . . 8 β’ π = ( I βWord (πΌ Γ 2o)) | |
5 | fviss 6961 | . . . . . . . 8 β’ ( I βWord (πΌ Γ 2o)) β Word (πΌ Γ 2o) | |
6 | 4, 5 | eqsstri 4011 | . . . . . . 7 β’ π β Word (πΌ Γ 2o) |
7 | 6 | sseli 3973 | . . . . . 6 β’ (π β π β π β Word (πΌ Γ 2o)) |
8 | frgpup.b | . . . . . . 7 β’ π΅ = (Baseβπ») | |
9 | frgpup.n | . . . . . . 7 β’ π = (invgβπ») | |
10 | frgpup.t | . . . . . . 7 β’ π = (π¦ β πΌ, π§ β 2o β¦ if(π§ = β , (πΉβπ¦), (πβ(πΉβπ¦)))) | |
11 | frgpup.i | . . . . . . 7 β’ (π β πΌ β π) | |
12 | frgpup.a | . . . . . . 7 β’ (π β πΉ:πΌβΆπ΅) | |
13 | 8, 9, 10, 2, 11, 12 | frgpuptf 19687 | . . . . . 6 β’ (π β π:(πΌ Γ 2o)βΆπ΅) |
14 | wrdco 14785 | . . . . . 6 β’ ((π β Word (πΌ Γ 2o) β§ π:(πΌ Γ 2o)βΆπ΅) β (π β π) β Word π΅) | |
15 | 7, 13, 14 | syl2anr 596 | . . . . 5 β’ ((π β§ π β π) β (π β π) β Word π΅) |
16 | 8 | gsumwcl 18761 | . . . . 5 β’ ((π» β Mnd β§ (π β π) β Word π΅) β (π» Ξ£g (π β π)) β π΅) |
17 | 3, 15, 16 | syl2an2r 682 | . . . 4 β’ ((π β§ π β π) β (π» Ξ£g (π β π)) β π΅) |
18 | frgpup.r | . . . . . 6 β’ βΌ = ( ~FG βπΌ) | |
19 | 4, 18 | efger 19635 | . . . . 5 β’ βΌ Er π |
20 | 19 | a1i 11 | . . . 4 β’ (π β βΌ Er π) |
21 | 4 | fvexi 6898 | . . . . 5 β’ π β V |
22 | 21 | a1i 11 | . . . 4 β’ (π β π β V) |
23 | coeq2 5851 | . . . . 5 β’ (π = β β (π β π) = (π β β)) | |
24 | 23 | oveq2d 7420 | . . . 4 β’ (π = β β (π» Ξ£g (π β π)) = (π» Ξ£g (π β β))) |
25 | 8, 9, 10, 2, 11, 12, 4, 18 | frgpuplem 19689 | . . . 4 β’ ((π β§ π βΌ β) β (π» Ξ£g (π β π)) = (π» Ξ£g (π β β))) |
26 | 1, 17, 20, 22, 24, 25 | qliftfund 8796 | . . 3 β’ (π β Fun πΈ) |
27 | 1, 17, 20, 22 | qliftf 8798 | . . 3 β’ (π β (Fun πΈ β πΈ:(π / βΌ )βΆπ΅)) |
28 | 26, 27 | mpbid 231 | . 2 β’ (π β πΈ:(π / βΌ )βΆπ΅) |
29 | frgpup.x | . . . 4 β’ π = (BaseβπΊ) | |
30 | frgpup.g | . . . . . . 7 β’ πΊ = (freeGrpβπΌ) | |
31 | eqid 2726 | . . . . . . 7 β’ (freeMndβ(πΌ Γ 2o)) = (freeMndβ(πΌ Γ 2o)) | |
32 | 30, 31, 18 | frgpval 19675 | . . . . . 6 β’ (πΌ β π β πΊ = ((freeMndβ(πΌ Γ 2o)) /s βΌ )) |
33 | 11, 32 | syl 17 | . . . . 5 β’ (π β πΊ = ((freeMndβ(πΌ Γ 2o)) /s βΌ )) |
34 | 2on 8478 | . . . . . . . . 9 β’ 2o β On | |
35 | xpexg 7733 | . . . . . . . . 9 β’ ((πΌ β π β§ 2o β On) β (πΌ Γ 2o) β V) | |
36 | 11, 34, 35 | sylancl 585 | . . . . . . . 8 β’ (π β (πΌ Γ 2o) β V) |
37 | wrdexg 14477 | . . . . . . . 8 β’ ((πΌ Γ 2o) β V β Word (πΌ Γ 2o) β V) | |
38 | fvi 6960 | . . . . . . . 8 β’ (Word (πΌ Γ 2o) β V β ( I βWord (πΌ Γ 2o)) = Word (πΌ Γ 2o)) | |
39 | 36, 37, 38 | 3syl 18 | . . . . . . 7 β’ (π β ( I βWord (πΌ Γ 2o)) = Word (πΌ Γ 2o)) |
40 | 4, 39 | eqtrid 2778 | . . . . . 6 β’ (π β π = Word (πΌ Γ 2o)) |
41 | eqid 2726 | . . . . . . . 8 β’ (Baseβ(freeMndβ(πΌ Γ 2o))) = (Baseβ(freeMndβ(πΌ Γ 2o))) | |
42 | 31, 41 | frmdbas 18774 | . . . . . . 7 β’ ((πΌ Γ 2o) β V β (Baseβ(freeMndβ(πΌ Γ 2o))) = Word (πΌ Γ 2o)) |
43 | 36, 42 | syl 17 | . . . . . 6 β’ (π β (Baseβ(freeMndβ(πΌ Γ 2o))) = Word (πΌ Γ 2o)) |
44 | 40, 43 | eqtr4d 2769 | . . . . 5 β’ (π β π = (Baseβ(freeMndβ(πΌ Γ 2o)))) |
45 | 18 | fvexi 6898 | . . . . . 6 β’ βΌ β V |
46 | 45 | a1i 11 | . . . . 5 β’ (π β βΌ β V) |
47 | fvexd 6899 | . . . . 5 β’ (π β (freeMndβ(πΌ Γ 2o)) β V) | |
48 | 33, 44, 46, 47 | qusbas 17497 | . . . 4 β’ (π β (π / βΌ ) = (BaseβπΊ)) |
49 | 29, 48 | eqtr4id 2785 | . . 3 β’ (π β π = (π / βΌ )) |
50 | 49 | feq2d 6696 | . 2 β’ (π β (πΈ:πβΆπ΅ β πΈ:(π / βΌ )βΆπ΅)) |
51 | 28, 50 | mpbird 257 | 1 β’ (π β πΈ:πβΆπ΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3468 β c0 4317 ifcif 4523 β¨cop 4629 β¦ cmpt 5224 I cid 5566 Γ cxp 5667 ran crn 5670 β ccom 5673 Oncon0 6357 Fun wfun 6530 βΆwf 6532 βcfv 6536 (class class class)co 7404 β cmpo 7406 2oc2o 8458 Er wer 8699 [cec 8700 / cqs 8701 Word cword 14467 Basecbs 17150 Ξ£g cgsu 17392 /s cqus 17457 Mndcmnd 18664 freeMndcfrmd 18769 Grpcgrp 18860 invgcminusg 18861 ~FG cefg 19623 freeGrpcfrgp 19624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-ot 4632 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-er 8702 df-ec 8704 df-qs 8708 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-fz 13488 df-fzo 13631 df-seq 13970 df-hash 14293 df-word 14468 df-concat 14524 df-s1 14549 df-substr 14594 df-pfx 14624 df-splice 14703 df-s2 14802 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-0g 17393 df-gsum 17394 df-imas 17460 df-qus 17461 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-submnd 18711 df-frmd 18771 df-grp 18863 df-minusg 18864 df-efg 19626 df-frgp 19627 |
This theorem is referenced by: frgpupval 19691 frgpup1 19692 |
Copyright terms: Public domain | W3C validator |