MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpupf Structured version   Visualization version   GIF version

Theorem frgpupf 19815
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpup.r = ( ~FG𝐼)
frgpup.g 𝐺 = (freeGrp‘𝐼)
frgpup.x 𝑋 = (Base‘𝐺)
frgpup.e 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
Assertion
Ref Expression
frgpupf (𝜑𝐸:𝑋𝐵)
Distinct variable groups:   𝑦,𝑔,𝑧   𝑔,𝐻   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝐵,𝑔,𝑦,𝑧   𝑇,𝑔   ,𝑔   𝜑,𝑔,𝑦,𝑧   𝑦,𝐼,𝑧   𝑔,𝑊
Allowed substitution hints:   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑔)   𝐹(𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐻(𝑦,𝑧)   𝐼(𝑔)   𝑁(𝑔)   𝑉(𝑦,𝑧,𝑔)   𝑊(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem frgpupf
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 frgpup.e . . . 4 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
2 frgpup.h . . . . . 6 (𝜑𝐻 ∈ Grp)
32grpmndd 18986 . . . . 5 (𝜑𝐻 ∈ Mnd)
4 frgpup.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2o))
5 fviss 6999 . . . . . . . 8 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
64, 5eqsstri 4043 . . . . . . 7 𝑊 ⊆ Word (𝐼 × 2o)
76sseli 4004 . . . . . 6 (𝑔𝑊𝑔 ∈ Word (𝐼 × 2o))
8 frgpup.b . . . . . . 7 𝐵 = (Base‘𝐻)
9 frgpup.n . . . . . . 7 𝑁 = (invg𝐻)
10 frgpup.t . . . . . . 7 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
11 frgpup.i . . . . . . 7 (𝜑𝐼𝑉)
12 frgpup.a . . . . . . 7 (𝜑𝐹:𝐼𝐵)
138, 9, 10, 2, 11, 12frgpuptf 19812 . . . . . 6 (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
14 wrdco 14880 . . . . . 6 ((𝑔 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇𝑔) ∈ Word 𝐵)
157, 13, 14syl2anr 596 . . . . 5 ((𝜑𝑔𝑊) → (𝑇𝑔) ∈ Word 𝐵)
168gsumwcl 18874 . . . . 5 ((𝐻 ∈ Mnd ∧ (𝑇𝑔) ∈ Word 𝐵) → (𝐻 Σg (𝑇𝑔)) ∈ 𝐵)
173, 15, 16syl2an2r 684 . . . 4 ((𝜑𝑔𝑊) → (𝐻 Σg (𝑇𝑔)) ∈ 𝐵)
18 frgpup.r . . . . . 6 = ( ~FG𝐼)
194, 18efger 19760 . . . . 5 Er 𝑊
2019a1i 11 . . . 4 (𝜑 Er 𝑊)
214fvexi 6934 . . . . 5 𝑊 ∈ V
2221a1i 11 . . . 4 (𝜑𝑊 ∈ V)
23 coeq2 5883 . . . . 5 (𝑔 = → (𝑇𝑔) = (𝑇))
2423oveq2d 7464 . . . 4 (𝑔 = → (𝐻 Σg (𝑇𝑔)) = (𝐻 Σg (𝑇)))
258, 9, 10, 2, 11, 12, 4, 18frgpuplem 19814 . . . 4 ((𝜑𝑔 ) → (𝐻 Σg (𝑇𝑔)) = (𝐻 Σg (𝑇)))
261, 17, 20, 22, 24, 25qliftfund 8861 . . 3 (𝜑 → Fun 𝐸)
271, 17, 20, 22qliftf 8863 . . 3 (𝜑 → (Fun 𝐸𝐸:(𝑊 / )⟶𝐵))
2826, 27mpbid 232 . 2 (𝜑𝐸:(𝑊 / )⟶𝐵)
29 frgpup.x . . . 4 𝑋 = (Base‘𝐺)
30 frgpup.g . . . . . . 7 𝐺 = (freeGrp‘𝐼)
31 eqid 2740 . . . . . . 7 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
3230, 31, 18frgpval 19800 . . . . . 6 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
3311, 32syl 17 . . . . 5 (𝜑𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
34 2on 8536 . . . . . . . . 9 2o ∈ On
35 xpexg 7785 . . . . . . . . 9 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
3611, 34, 35sylancl 585 . . . . . . . 8 (𝜑 → (𝐼 × 2o) ∈ V)
37 wrdexg 14572 . . . . . . . 8 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
38 fvi 6998 . . . . . . . 8 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
3936, 37, 383syl 18 . . . . . . 7 (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
404, 39eqtrid 2792 . . . . . 6 (𝜑𝑊 = Word (𝐼 × 2o))
41 eqid 2740 . . . . . . . 8 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
4231, 41frmdbas 18887 . . . . . . 7 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
4336, 42syl 17 . . . . . 6 (𝜑 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
4440, 43eqtr4d 2783 . . . . 5 (𝜑𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
4518fvexi 6934 . . . . . 6 ∈ V
4645a1i 11 . . . . 5 (𝜑 ∈ V)
47 fvexd 6935 . . . . 5 (𝜑 → (freeMnd‘(𝐼 × 2o)) ∈ V)
4833, 44, 46, 47qusbas 17605 . . . 4 (𝜑 → (𝑊 / ) = (Base‘𝐺))
4929, 48eqtr4id 2799 . . 3 (𝜑𝑋 = (𝑊 / ))
5049feq2d 6733 . 2 (𝜑 → (𝐸:𝑋𝐵𝐸:(𝑊 / )⟶𝐵))
5128, 50mpbird 257 1 (𝜑𝐸:𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  ifcif 4548  cop 4654  cmpt 5249   I cid 5592   × cxp 5698  ran crn 5701  ccom 5704  Oncon0 6395  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  2oc2o 8516   Er wer 8760  [cec 8761   / cqs 8762  Word cword 14562  Basecbs 17258   Σg cgsu 17500   /s cqus 17565  Mndcmnd 18772  freeMndcfrmd 18882  Grpcgrp 18973  invgcminusg 18974   ~FG cefg 19748  freeGrpcfrgp 19749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-s2 14897  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-gsum 17502  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-frmd 18884  df-grp 18976  df-minusg 18977  df-efg 19751  df-frgp 19752
This theorem is referenced by:  frgpupval  19816  frgpup1  19817
  Copyright terms: Public domain W3C validator