Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgpupf | Structured version Visualization version GIF version |
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
frgpup.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
frgpup.r | ⊢ ∼ = ( ~FG ‘𝐼) |
frgpup.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
frgpup.x | ⊢ 𝑋 = (Base‘𝐺) |
frgpup.e | ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) |
Ref | Expression |
---|---|
frgpupf | ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup.e | . . . 4 ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) | |
2 | frgpup.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
3 | 2 | grpmndd 18504 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
4 | frgpup.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
5 | fviss 6827 | . . . . . . . 8 ⊢ ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o) | |
6 | 4, 5 | eqsstri 3951 | . . . . . . 7 ⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
7 | 6 | sseli 3913 | . . . . . 6 ⊢ (𝑔 ∈ 𝑊 → 𝑔 ∈ Word (𝐼 × 2o)) |
8 | frgpup.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐻) | |
9 | frgpup.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝐻) | |
10 | frgpup.t | . . . . . . 7 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
11 | frgpup.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
12 | frgpup.a | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
13 | 8, 9, 10, 2, 11, 12 | frgpuptf 19291 | . . . . . 6 ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
14 | wrdco 14472 | . . . . . 6 ⊢ ((𝑔 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) | |
15 | 7, 13, 14 | syl2anr 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) |
16 | 8 | gsumwcl 18392 | . . . . 5 ⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ 𝑔) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
17 | 3, 15, 16 | syl2an2r 681 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
18 | frgpup.r | . . . . . 6 ⊢ ∼ = ( ~FG ‘𝐼) | |
19 | 4, 18 | efger 19239 | . . . . 5 ⊢ ∼ Er 𝑊 |
20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → ∼ Er 𝑊) |
21 | 4 | fvexi 6770 | . . . . 5 ⊢ 𝑊 ∈ V |
22 | 21 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ V) |
23 | coeq2 5756 | . . . . 5 ⊢ (𝑔 = ℎ → (𝑇 ∘ 𝑔) = (𝑇 ∘ ℎ)) | |
24 | 23 | oveq2d 7271 | . . . 4 ⊢ (𝑔 = ℎ → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
25 | 8, 9, 10, 2, 11, 12, 4, 18 | frgpuplem 19293 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∼ ℎ) → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
26 | 1, 17, 20, 22, 24, 25 | qliftfund 8550 | . . 3 ⊢ (𝜑 → Fun 𝐸) |
27 | 1, 17, 20, 22 | qliftf 8552 | . . 3 ⊢ (𝜑 → (Fun 𝐸 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
28 | 26, 27 | mpbid 231 | . 2 ⊢ (𝜑 → 𝐸:(𝑊 / ∼ )⟶𝐵) |
29 | frgpup.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
30 | frgpup.g | . . . . . . 7 ⊢ 𝐺 = (freeGrp‘𝐼) | |
31 | eqid 2738 | . . . . . . 7 ⊢ (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o)) | |
32 | 30, 31, 18 | frgpval 19279 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ∼ )) |
33 | 11, 32 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ∼ )) |
34 | 2on 8275 | . . . . . . . . 9 ⊢ 2o ∈ On | |
35 | xpexg 7578 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
36 | 11, 34, 35 | sylancl 585 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 × 2o) ∈ V) |
37 | wrdexg 14155 | . . . . . . . 8 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
38 | fvi 6826 | . . . . . . . 8 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
39 | 36, 37, 38 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
40 | 4, 39 | eqtrid 2790 | . . . . . 6 ⊢ (𝜑 → 𝑊 = Word (𝐼 × 2o)) |
41 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o))) | |
42 | 31, 41 | frmdbas 18406 | . . . . . . 7 ⊢ ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o)) |
43 | 36, 42 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o)) |
44 | 40, 43 | eqtr4d 2781 | . . . . 5 ⊢ (𝜑 → 𝑊 = (Base‘(freeMnd‘(𝐼 × 2o)))) |
45 | 18 | fvexi 6770 | . . . . . 6 ⊢ ∼ ∈ V |
46 | 45 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∼ ∈ V) |
47 | fvexd 6771 | . . . . 5 ⊢ (𝜑 → (freeMnd‘(𝐼 × 2o)) ∈ V) | |
48 | 33, 44, 46, 47 | qusbas 17173 | . . . 4 ⊢ (𝜑 → (𝑊 / ∼ ) = (Base‘𝐺)) |
49 | 29, 48 | eqtr4id 2798 | . . 3 ⊢ (𝜑 → 𝑋 = (𝑊 / ∼ )) |
50 | 49 | feq2d 6570 | . 2 ⊢ (𝜑 → (𝐸:𝑋⟶𝐵 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
51 | 28, 50 | mpbird 256 | 1 ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ifcif 4456 〈cop 4564 ↦ cmpt 5153 I cid 5479 × cxp 5578 ran crn 5581 ∘ ccom 5584 Oncon0 6251 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 2oc2o 8261 Er wer 8453 [cec 8454 / cqs 8455 Word cword 14145 Basecbs 16840 Σg cgsu 17068 /s cqus 17133 Mndcmnd 18300 freeMndcfrmd 18401 Grpcgrp 18492 invgcminusg 18493 ~FG cefg 19227 freeGrpcfrgp 19228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-splice 14391 df-s2 14489 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-gsum 17070 df-imas 17136 df-qus 17137 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-frmd 18403 df-grp 18495 df-minusg 18496 df-efg 19230 df-frgp 19231 |
This theorem is referenced by: frgpupval 19295 frgpup1 19296 |
Copyright terms: Public domain | W3C validator |