MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpupf Structured version   Visualization version   GIF version

Theorem frgpupf 19020
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpup.r = ( ~FG𝐼)
frgpup.g 𝐺 = (freeGrp‘𝐼)
frgpup.x 𝑋 = (Base‘𝐺)
frgpup.e 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
Assertion
Ref Expression
frgpupf (𝜑𝐸:𝑋𝐵)
Distinct variable groups:   𝑦,𝑔,𝑧   𝑔,𝐻   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝐵,𝑔,𝑦,𝑧   𝑇,𝑔   ,𝑔   𝜑,𝑔,𝑦,𝑧   𝑦,𝐼,𝑧   𝑔,𝑊
Allowed substitution hints:   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑔)   𝐹(𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐻(𝑦,𝑧)   𝐼(𝑔)   𝑁(𝑔)   𝑉(𝑦,𝑧,𝑔)   𝑊(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem frgpupf
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 frgpup.e . . . 4 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
2 frgpup.h . . . . . 6 (𝜑𝐻 ∈ Grp)
32grpmndd 18234 . . . . 5 (𝜑𝐻 ∈ Mnd)
4 frgpup.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2o))
5 fviss 6748 . . . . . . . 8 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
64, 5eqsstri 3912 . . . . . . 7 𝑊 ⊆ Word (𝐼 × 2o)
76sseli 3874 . . . . . 6 (𝑔𝑊𝑔 ∈ Word (𝐼 × 2o))
8 frgpup.b . . . . . . 7 𝐵 = (Base‘𝐻)
9 frgpup.n . . . . . . 7 𝑁 = (invg𝐻)
10 frgpup.t . . . . . . 7 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
11 frgpup.i . . . . . . 7 (𝜑𝐼𝑉)
12 frgpup.a . . . . . . 7 (𝜑𝐹:𝐼𝐵)
138, 9, 10, 2, 11, 12frgpuptf 19017 . . . . . 6 (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
14 wrdco 14285 . . . . . 6 ((𝑔 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇𝑔) ∈ Word 𝐵)
157, 13, 14syl2anr 600 . . . . 5 ((𝜑𝑔𝑊) → (𝑇𝑔) ∈ Word 𝐵)
168gsumwcl 18122 . . . . 5 ((𝐻 ∈ Mnd ∧ (𝑇𝑔) ∈ Word 𝐵) → (𝐻 Σg (𝑇𝑔)) ∈ 𝐵)
173, 15, 16syl2an2r 685 . . . 4 ((𝜑𝑔𝑊) → (𝐻 Σg (𝑇𝑔)) ∈ 𝐵)
18 frgpup.r . . . . . 6 = ( ~FG𝐼)
194, 18efger 18965 . . . . 5 Er 𝑊
2019a1i 11 . . . 4 (𝜑 Er 𝑊)
214fvexi 6691 . . . . 5 𝑊 ∈ V
2221a1i 11 . . . 4 (𝜑𝑊 ∈ V)
23 coeq2 5702 . . . . 5 (𝑔 = → (𝑇𝑔) = (𝑇))
2423oveq2d 7189 . . . 4 (𝑔 = → (𝐻 Σg (𝑇𝑔)) = (𝐻 Σg (𝑇)))
258, 9, 10, 2, 11, 12, 4, 18frgpuplem 19019 . . . 4 ((𝜑𝑔 ) → (𝐻 Σg (𝑇𝑔)) = (𝐻 Σg (𝑇)))
261, 17, 20, 22, 24, 25qliftfund 8417 . . 3 (𝜑 → Fun 𝐸)
271, 17, 20, 22qliftf 8419 . . 3 (𝜑 → (Fun 𝐸𝐸:(𝑊 / )⟶𝐵))
2826, 27mpbid 235 . 2 (𝜑𝐸:(𝑊 / )⟶𝐵)
29 frgpup.x . . . 4 𝑋 = (Base‘𝐺)
30 frgpup.g . . . . . . 7 𝐺 = (freeGrp‘𝐼)
31 eqid 2739 . . . . . . 7 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
3230, 31, 18frgpval 19005 . . . . . 6 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
3311, 32syl 17 . . . . 5 (𝜑𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
34 2on 8142 . . . . . . . . 9 2o ∈ On
35 xpexg 7494 . . . . . . . . 9 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
3611, 34, 35sylancl 589 . . . . . . . 8 (𝜑 → (𝐼 × 2o) ∈ V)
37 wrdexg 13968 . . . . . . . 8 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
38 fvi 6747 . . . . . . . 8 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
3936, 37, 383syl 18 . . . . . . 7 (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
404, 39syl5eq 2786 . . . . . 6 (𝜑𝑊 = Word (𝐼 × 2o))
41 eqid 2739 . . . . . . . 8 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
4231, 41frmdbas 18136 . . . . . . 7 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
4336, 42syl 17 . . . . . 6 (𝜑 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
4440, 43eqtr4d 2777 . . . . 5 (𝜑𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
4518fvexi 6691 . . . . . 6 ∈ V
4645a1i 11 . . . . 5 (𝜑 ∈ V)
47 fvexd 6692 . . . . 5 (𝜑 → (freeMnd‘(𝐼 × 2o)) ∈ V)
4833, 44, 46, 47qusbas 16924 . . . 4 (𝜑 → (𝑊 / ) = (Base‘𝐺))
4929, 48eqtr4id 2793 . . 3 (𝜑𝑋 = (𝑊 / ))
5049feq2d 6491 . 2 (𝜑 → (𝐸:𝑋𝐵𝐸:(𝑊 / )⟶𝐵))
5128, 50mpbird 260 1 (𝜑𝐸:𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2114  Vcvv 3399  c0 4212  ifcif 4415  cop 4523  cmpt 5111   I cid 5429   × cxp 5524  ran crn 5527  ccom 5530  Oncon0 6173  Fun wfun 6334  wf 6336  cfv 6340  (class class class)co 7173  cmpo 7175  2oc2o 8128   Er wer 8320  [cec 8321   / cqs 8322  Word cword 13958  Basecbs 16589   Σg cgsu 16820   /s cqus 16884  Mndcmnd 18030  freeMndcfrmd 18131  Grpcgrp 18222  invgcminusg 18223   ~FG cefg 18953  freeGrpcfrgp 18954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-ot 4526  df-uni 4798  df-int 4838  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-2o 8135  df-er 8323  df-ec 8325  df-qs 8329  df-map 8442  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-sup 8982  df-inf 8983  df-card 9444  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-nn 11720  df-2 11782  df-3 11783  df-4 11784  df-5 11785  df-6 11786  df-7 11787  df-8 11788  df-9 11789  df-n0 11980  df-z 12066  df-dec 12183  df-uz 12328  df-fz 12985  df-fzo 13128  df-seq 13464  df-hash 13786  df-word 13959  df-concat 14015  df-s1 14042  df-substr 14095  df-pfx 14125  df-splice 14204  df-s2 14302  df-struct 16591  df-ndx 16592  df-slot 16593  df-base 16595  df-sets 16596  df-ress 16597  df-plusg 16684  df-mulr 16685  df-sca 16687  df-vsca 16688  df-ip 16689  df-tset 16690  df-ple 16691  df-ds 16693  df-0g 16821  df-gsum 16822  df-imas 16887  df-qus 16888  df-mgm 17971  df-sgrp 18020  df-mnd 18031  df-submnd 18076  df-frmd 18133  df-grp 18225  df-minusg 18226  df-efg 18956  df-frgp 18957
This theorem is referenced by:  frgpupval  19021  frgpup1  19022
  Copyright terms: Public domain W3C validator