| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgpupf | Structured version Visualization version GIF version | ||
| Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
| frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
| frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
| frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
| frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
| frgpup.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| frgpup.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| frgpup.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
| frgpup.x | ⊢ 𝑋 = (Base‘𝐺) |
| frgpup.e | ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) |
| Ref | Expression |
|---|---|
| frgpupf | ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.e | . . . 4 ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) | |
| 2 | frgpup.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
| 3 | 2 | grpmndd 18929 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| 4 | frgpup.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 5 | fviss 6956 | . . . . . . . 8 ⊢ ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o) | |
| 6 | 4, 5 | eqsstri 4005 | . . . . . . 7 ⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
| 7 | 6 | sseli 3954 | . . . . . 6 ⊢ (𝑔 ∈ 𝑊 → 𝑔 ∈ Word (𝐼 × 2o)) |
| 8 | frgpup.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐻) | |
| 9 | frgpup.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝐻) | |
| 10 | frgpup.t | . . . . . . 7 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
| 11 | frgpup.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 12 | frgpup.a | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
| 13 | 8, 9, 10, 2, 11, 12 | frgpuptf 19751 | . . . . . 6 ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
| 14 | wrdco 14850 | . . . . . 6 ⊢ ((𝑔 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) | |
| 15 | 7, 13, 14 | syl2anr 597 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) |
| 16 | 8 | gsumwcl 18817 | . . . . 5 ⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ 𝑔) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
| 17 | 3, 15, 16 | syl2an2r 685 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
| 18 | frgpup.r | . . . . . 6 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 19 | 4, 18 | efger 19699 | . . . . 5 ⊢ ∼ Er 𝑊 |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → ∼ Er 𝑊) |
| 21 | 4 | fvexi 6890 | . . . . 5 ⊢ 𝑊 ∈ V |
| 22 | 21 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ V) |
| 23 | coeq2 5838 | . . . . 5 ⊢ (𝑔 = ℎ → (𝑇 ∘ 𝑔) = (𝑇 ∘ ℎ)) | |
| 24 | 23 | oveq2d 7421 | . . . 4 ⊢ (𝑔 = ℎ → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
| 25 | 8, 9, 10, 2, 11, 12, 4, 18 | frgpuplem 19753 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∼ ℎ) → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
| 26 | 1, 17, 20, 22, 24, 25 | qliftfund 8817 | . . 3 ⊢ (𝜑 → Fun 𝐸) |
| 27 | 1, 17, 20, 22 | qliftf 8819 | . . 3 ⊢ (𝜑 → (Fun 𝐸 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
| 28 | 26, 27 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐸:(𝑊 / ∼ )⟶𝐵) |
| 29 | frgpup.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 30 | frgpup.g | . . . . . . 7 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 31 | eqid 2735 | . . . . . . 7 ⊢ (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o)) | |
| 32 | 30, 31, 18 | frgpval 19739 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ∼ )) |
| 33 | 11, 32 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ∼ )) |
| 34 | 2on 8494 | . . . . . . . . 9 ⊢ 2o ∈ On | |
| 35 | xpexg 7744 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
| 36 | 11, 34, 35 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 × 2o) ∈ V) |
| 37 | wrdexg 14542 | . . . . . . . 8 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
| 38 | fvi 6955 | . . . . . . . 8 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
| 39 | 36, 37, 38 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
| 40 | 4, 39 | eqtrid 2782 | . . . . . 6 ⊢ (𝜑 → 𝑊 = Word (𝐼 × 2o)) |
| 41 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o))) | |
| 42 | 31, 41 | frmdbas 18830 | . . . . . . 7 ⊢ ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o)) |
| 43 | 36, 42 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o)) |
| 44 | 40, 43 | eqtr4d 2773 | . . . . 5 ⊢ (𝜑 → 𝑊 = (Base‘(freeMnd‘(𝐼 × 2o)))) |
| 45 | 18 | fvexi 6890 | . . . . . 6 ⊢ ∼ ∈ V |
| 46 | 45 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∼ ∈ V) |
| 47 | fvexd 6891 | . . . . 5 ⊢ (𝜑 → (freeMnd‘(𝐼 × 2o)) ∈ V) | |
| 48 | 33, 44, 46, 47 | qusbas 17559 | . . . 4 ⊢ (𝜑 → (𝑊 / ∼ ) = (Base‘𝐺)) |
| 49 | 29, 48 | eqtr4id 2789 | . . 3 ⊢ (𝜑 → 𝑋 = (𝑊 / ∼ )) |
| 50 | 49 | feq2d 6692 | . 2 ⊢ (𝜑 → (𝐸:𝑋⟶𝐵 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
| 51 | 28, 50 | mpbird 257 | 1 ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 ifcif 4500 〈cop 4607 ↦ cmpt 5201 I cid 5547 × cxp 5652 ran crn 5655 ∘ ccom 5658 Oncon0 6352 Fun wfun 6525 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 2oc2o 8474 Er wer 8716 [cec 8717 / cqs 8718 Word cword 14531 Basecbs 17228 Σg cgsu 17454 /s cqus 17519 Mndcmnd 18712 freeMndcfrmd 18825 Grpcgrp 18916 invgcminusg 18917 ~FG cefg 19687 freeGrpcfrgp 19688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-ec 8721 df-qs 8725 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-substr 14659 df-pfx 14689 df-splice 14768 df-s2 14867 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-0g 17455 df-gsum 17456 df-imas 17522 df-qus 17523 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-frmd 18827 df-grp 18919 df-minusg 18920 df-efg 19690 df-frgp 19691 |
| This theorem is referenced by: frgpupval 19755 frgpup1 19756 |
| Copyright terms: Public domain | W3C validator |