![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgpupf | Structured version Visualization version GIF version |
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
frgpup.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
frgpup.r | ⊢ ∼ = ( ~FG ‘𝐼) |
frgpup.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
frgpup.x | ⊢ 𝑋 = (Base‘𝐺) |
frgpup.e | ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) |
Ref | Expression |
---|---|
frgpupf | ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup.e | . . . 4 ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) | |
2 | frgpup.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
3 | 2 | grpmndd 18760 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
4 | frgpup.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
5 | fviss 6918 | . . . . . . . 8 ⊢ ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o) | |
6 | 4, 5 | eqsstri 3978 | . . . . . . 7 ⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
7 | 6 | sseli 3940 | . . . . . 6 ⊢ (𝑔 ∈ 𝑊 → 𝑔 ∈ Word (𝐼 × 2o)) |
8 | frgpup.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐻) | |
9 | frgpup.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝐻) | |
10 | frgpup.t | . . . . . . 7 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
11 | frgpup.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
12 | frgpup.a | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
13 | 8, 9, 10, 2, 11, 12 | frgpuptf 19552 | . . . . . 6 ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
14 | wrdco 14720 | . . . . . 6 ⊢ ((𝑔 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) | |
15 | 7, 13, 14 | syl2anr 597 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) |
16 | 8 | gsumwcl 18649 | . . . . 5 ⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ 𝑔) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
17 | 3, 15, 16 | syl2an2r 683 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
18 | frgpup.r | . . . . . 6 ⊢ ∼ = ( ~FG ‘𝐼) | |
19 | 4, 18 | efger 19500 | . . . . 5 ⊢ ∼ Er 𝑊 |
20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → ∼ Er 𝑊) |
21 | 4 | fvexi 6856 | . . . . 5 ⊢ 𝑊 ∈ V |
22 | 21 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ V) |
23 | coeq2 5814 | . . . . 5 ⊢ (𝑔 = ℎ → (𝑇 ∘ 𝑔) = (𝑇 ∘ ℎ)) | |
24 | 23 | oveq2d 7373 | . . . 4 ⊢ (𝑔 = ℎ → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
25 | 8, 9, 10, 2, 11, 12, 4, 18 | frgpuplem 19554 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∼ ℎ) → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
26 | 1, 17, 20, 22, 24, 25 | qliftfund 8742 | . . 3 ⊢ (𝜑 → Fun 𝐸) |
27 | 1, 17, 20, 22 | qliftf 8744 | . . 3 ⊢ (𝜑 → (Fun 𝐸 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
28 | 26, 27 | mpbid 231 | . 2 ⊢ (𝜑 → 𝐸:(𝑊 / ∼ )⟶𝐵) |
29 | frgpup.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
30 | frgpup.g | . . . . . . 7 ⊢ 𝐺 = (freeGrp‘𝐼) | |
31 | eqid 2736 | . . . . . . 7 ⊢ (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o)) | |
32 | 30, 31, 18 | frgpval 19540 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ∼ )) |
33 | 11, 32 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ∼ )) |
34 | 2on 8426 | . . . . . . . . 9 ⊢ 2o ∈ On | |
35 | xpexg 7684 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
36 | 11, 34, 35 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 × 2o) ∈ V) |
37 | wrdexg 14412 | . . . . . . . 8 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
38 | fvi 6917 | . . . . . . . 8 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
39 | 36, 37, 38 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
40 | 4, 39 | eqtrid 2788 | . . . . . 6 ⊢ (𝜑 → 𝑊 = Word (𝐼 × 2o)) |
41 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o))) | |
42 | 31, 41 | frmdbas 18662 | . . . . . . 7 ⊢ ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o)) |
43 | 36, 42 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o)) |
44 | 40, 43 | eqtr4d 2779 | . . . . 5 ⊢ (𝜑 → 𝑊 = (Base‘(freeMnd‘(𝐼 × 2o)))) |
45 | 18 | fvexi 6856 | . . . . . 6 ⊢ ∼ ∈ V |
46 | 45 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∼ ∈ V) |
47 | fvexd 6857 | . . . . 5 ⊢ (𝜑 → (freeMnd‘(𝐼 × 2o)) ∈ V) | |
48 | 33, 44, 46, 47 | qusbas 17427 | . . . 4 ⊢ (𝜑 → (𝑊 / ∼ ) = (Base‘𝐺)) |
49 | 29, 48 | eqtr4id 2795 | . . 3 ⊢ (𝜑 → 𝑋 = (𝑊 / ∼ )) |
50 | 49 | feq2d 6654 | . 2 ⊢ (𝜑 → (𝐸:𝑋⟶𝐵 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
51 | 28, 50 | mpbird 256 | 1 ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3445 ∅c0 4282 ifcif 4486 〈cop 4592 ↦ cmpt 5188 I cid 5530 × cxp 5631 ran crn 5634 ∘ ccom 5637 Oncon0 6317 Fun wfun 6490 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 2oc2o 8406 Er wer 8645 [cec 8646 / cqs 8647 Word cword 14402 Basecbs 17083 Σg cgsu 17322 /s cqus 17387 Mndcmnd 18556 freeMndcfrmd 18657 Grpcgrp 18748 invgcminusg 18749 ~FG cefg 19488 freeGrpcfrgp 19489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-ot 4595 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-ec 8650 df-qs 8654 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-inf 9379 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-word 14403 df-concat 14459 df-s1 14484 df-substr 14529 df-pfx 14559 df-splice 14638 df-s2 14737 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-0g 17323 df-gsum 17324 df-imas 17390 df-qus 17391 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-frmd 18659 df-grp 18751 df-minusg 18752 df-efg 19491 df-frgp 19492 |
This theorem is referenced by: frgpupval 19556 frgpup1 19557 |
Copyright terms: Public domain | W3C validator |