![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgpupf | Structured version Visualization version GIF version |
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
frgpup.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) |
frgpup.r | ⊢ ∼ = ( ~FG ‘𝐼) |
frgpup.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
frgpup.x | ⊢ 𝑋 = (Base‘𝐺) |
frgpup.e | ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) |
Ref | Expression |
---|---|
frgpupf | ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup.e | . . . 4 ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) | |
2 | frgpup.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
3 | grpmnd 17745 | . . . . . . 7 ⊢ (𝐻 ∈ Grp → 𝐻 ∈ Mnd) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
5 | 4 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → 𝐻 ∈ Mnd) |
6 | frgpup.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) | |
7 | fviss 6481 | . . . . . . . 8 ⊢ ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜) | |
8 | 6, 7 | eqsstri 3831 | . . . . . . 7 ⊢ 𝑊 ⊆ Word (𝐼 × 2𝑜) |
9 | 8 | sseli 3794 | . . . . . 6 ⊢ (𝑔 ∈ 𝑊 → 𝑔 ∈ Word (𝐼 × 2𝑜)) |
10 | frgpup.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐻) | |
11 | frgpup.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝐻) | |
12 | frgpup.t | . . . . . . 7 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
13 | frgpup.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
14 | frgpup.a | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
15 | 10, 11, 12, 2, 13, 14 | frgpuptf 18498 | . . . . . 6 ⊢ (𝜑 → 𝑇:(𝐼 × 2𝑜)⟶𝐵) |
16 | wrdco 13916 | . . . . . 6 ⊢ ((𝑔 ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) | |
17 | 9, 15, 16 | syl2anr 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) |
18 | 10 | gsumwcl 17692 | . . . . 5 ⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ 𝑔) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
19 | 5, 17, 18 | syl2anc 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
20 | frgpup.r | . . . . . 6 ⊢ ∼ = ( ~FG ‘𝐼) | |
21 | 6, 20 | efger 18444 | . . . . 5 ⊢ ∼ Er 𝑊 |
22 | 21 | a1i 11 | . . . 4 ⊢ (𝜑 → ∼ Er 𝑊) |
23 | 6 | fvexi 6425 | . . . . 5 ⊢ 𝑊 ∈ V |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ V) |
25 | coeq2 5484 | . . . . 5 ⊢ (𝑔 = ℎ → (𝑇 ∘ 𝑔) = (𝑇 ∘ ℎ)) | |
26 | 25 | oveq2d 6894 | . . . 4 ⊢ (𝑔 = ℎ → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
27 | 10, 11, 12, 2, 13, 14, 6, 20 | frgpuplem 18500 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∼ ℎ) → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
28 | 1, 19, 22, 24, 26, 27 | qliftfund 8071 | . . 3 ⊢ (𝜑 → Fun 𝐸) |
29 | 1, 19, 22, 24 | qliftf 8073 | . . 3 ⊢ (𝜑 → (Fun 𝐸 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
30 | 28, 29 | mpbid 224 | . 2 ⊢ (𝜑 → 𝐸:(𝑊 / ∼ )⟶𝐵) |
31 | frgpup.g | . . . . . . 7 ⊢ 𝐺 = (freeGrp‘𝐼) | |
32 | eqid 2799 | . . . . . . 7 ⊢ (freeMnd‘(𝐼 × 2𝑜)) = (freeMnd‘(𝐼 × 2𝑜)) | |
33 | 31, 32, 20 | frgpval 18486 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ∼ )) |
34 | 13, 33 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ∼ )) |
35 | 2on 7808 | . . . . . . . . 9 ⊢ 2𝑜 ∈ On | |
36 | xpexg 7194 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V) | |
37 | 13, 35, 36 | sylancl 581 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 × 2𝑜) ∈ V) |
38 | wrdexg 13544 | . . . . . . . 8 ⊢ ((𝐼 × 2𝑜) ∈ V → Word (𝐼 × 2𝑜) ∈ V) | |
39 | fvi 6480 | . . . . . . . 8 ⊢ (Word (𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜)) | |
40 | 37, 38, 39 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜)) |
41 | 6, 40 | syl5eq 2845 | . . . . . 6 ⊢ (𝜑 → 𝑊 = Word (𝐼 × 2𝑜)) |
42 | eqid 2799 | . . . . . . . 8 ⊢ (Base‘(freeMnd‘(𝐼 × 2𝑜))) = (Base‘(freeMnd‘(𝐼 × 2𝑜))) | |
43 | 32, 42 | frmdbas 17705 | . . . . . . 7 ⊢ ((𝐼 × 2𝑜) ∈ V → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜)) |
44 | 37, 43 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜)) |
45 | 41, 44 | eqtr4d 2836 | . . . . 5 ⊢ (𝜑 → 𝑊 = (Base‘(freeMnd‘(𝐼 × 2𝑜)))) |
46 | 20 | fvexi 6425 | . . . . . 6 ⊢ ∼ ∈ V |
47 | 46 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∼ ∈ V) |
48 | fvexd 6426 | . . . . 5 ⊢ (𝜑 → (freeMnd‘(𝐼 × 2𝑜)) ∈ V) | |
49 | 34, 45, 47, 48 | qusbas 16520 | . . . 4 ⊢ (𝜑 → (𝑊 / ∼ ) = (Base‘𝐺)) |
50 | frgpup.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
51 | 49, 50 | syl6reqr 2852 | . . 3 ⊢ (𝜑 → 𝑋 = (𝑊 / ∼ )) |
52 | 51 | feq2d 6242 | . 2 ⊢ (𝜑 → (𝐸:𝑋⟶𝐵 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
53 | 30, 52 | mpbird 249 | 1 ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∅c0 4115 ifcif 4277 〈cop 4374 ↦ cmpt 4922 I cid 5219 × cxp 5310 ran crn 5313 ∘ ccom 5316 Oncon0 5941 Fun wfun 6095 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ↦ cmpt2 6880 2𝑜c2o 7793 Er wer 7979 [cec 7980 / cqs 7981 Word cword 13534 Basecbs 16184 Σg cgsu 16416 /s cqus 16480 Mndcmnd 17609 freeMndcfrmd 17700 Grpcgrp 17738 invgcminusg 17739 ~FG cefg 18432 freeGrpcfrgp 18433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-ot 4377 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-ec 7984 df-qs 7988 df-map 8097 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-inf 8591 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-fz 12581 df-fzo 12721 df-seq 13056 df-hash 13371 df-word 13535 df-concat 13591 df-s1 13616 df-substr 13665 df-pfx 13714 df-splice 13821 df-s2 13933 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-0g 16417 df-gsum 16418 df-imas 16483 df-qus 16484 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-submnd 17651 df-frmd 17702 df-grp 17741 df-minusg 17742 df-efg 18435 df-frgp 18436 |
This theorem is referenced by: frgpupval 18502 frgpup1 18503 |
Copyright terms: Public domain | W3C validator |