| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgpupf | Structured version Visualization version GIF version | ||
| Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
| frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
| frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
| frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
| frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
| frgpup.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| frgpup.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| frgpup.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
| frgpup.x | ⊢ 𝑋 = (Base‘𝐺) |
| frgpup.e | ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) |
| Ref | Expression |
|---|---|
| frgpupf | ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.e | . . . 4 ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) | |
| 2 | frgpup.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
| 3 | 2 | grpmndd 18860 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| 4 | frgpup.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 5 | fviss 6920 | . . . . . . . 8 ⊢ ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o) | |
| 6 | 4, 5 | eqsstri 3990 | . . . . . . 7 ⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
| 7 | 6 | sseli 3939 | . . . . . 6 ⊢ (𝑔 ∈ 𝑊 → 𝑔 ∈ Word (𝐼 × 2o)) |
| 8 | frgpup.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐻) | |
| 9 | frgpup.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝐻) | |
| 10 | frgpup.t | . . . . . . 7 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
| 11 | frgpup.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 12 | frgpup.a | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
| 13 | 8, 9, 10, 2, 11, 12 | frgpuptf 19684 | . . . . . 6 ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
| 14 | wrdco 14773 | . . . . . 6 ⊢ ((𝑔 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) | |
| 15 | 7, 13, 14 | syl2anr 597 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) |
| 16 | 8 | gsumwcl 18748 | . . . . 5 ⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ 𝑔) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
| 17 | 3, 15, 16 | syl2an2r 685 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
| 18 | frgpup.r | . . . . . 6 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 19 | 4, 18 | efger 19632 | . . . . 5 ⊢ ∼ Er 𝑊 |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → ∼ Er 𝑊) |
| 21 | 4 | fvexi 6854 | . . . . 5 ⊢ 𝑊 ∈ V |
| 22 | 21 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ V) |
| 23 | coeq2 5812 | . . . . 5 ⊢ (𝑔 = ℎ → (𝑇 ∘ 𝑔) = (𝑇 ∘ ℎ)) | |
| 24 | 23 | oveq2d 7385 | . . . 4 ⊢ (𝑔 = ℎ → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
| 25 | 8, 9, 10, 2, 11, 12, 4, 18 | frgpuplem 19686 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∼ ℎ) → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
| 26 | 1, 17, 20, 22, 24, 25 | qliftfund 8753 | . . 3 ⊢ (𝜑 → Fun 𝐸) |
| 27 | 1, 17, 20, 22 | qliftf 8755 | . . 3 ⊢ (𝜑 → (Fun 𝐸 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
| 28 | 26, 27 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐸:(𝑊 / ∼ )⟶𝐵) |
| 29 | frgpup.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 30 | frgpup.g | . . . . . . 7 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 31 | eqid 2729 | . . . . . . 7 ⊢ (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o)) | |
| 32 | 30, 31, 18 | frgpval 19672 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ∼ )) |
| 33 | 11, 32 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ∼ )) |
| 34 | 2on 8424 | . . . . . . . . 9 ⊢ 2o ∈ On | |
| 35 | xpexg 7706 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
| 36 | 11, 34, 35 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 × 2o) ∈ V) |
| 37 | wrdexg 14465 | . . . . . . . 8 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
| 38 | fvi 6919 | . . . . . . . 8 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
| 39 | 36, 37, 38 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
| 40 | 4, 39 | eqtrid 2776 | . . . . . 6 ⊢ (𝜑 → 𝑊 = Word (𝐼 × 2o)) |
| 41 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o))) | |
| 42 | 31, 41 | frmdbas 18761 | . . . . . . 7 ⊢ ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o)) |
| 43 | 36, 42 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o)) |
| 44 | 40, 43 | eqtr4d 2767 | . . . . 5 ⊢ (𝜑 → 𝑊 = (Base‘(freeMnd‘(𝐼 × 2o)))) |
| 45 | 18 | fvexi 6854 | . . . . . 6 ⊢ ∼ ∈ V |
| 46 | 45 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∼ ∈ V) |
| 47 | fvexd 6855 | . . . . 5 ⊢ (𝜑 → (freeMnd‘(𝐼 × 2o)) ∈ V) | |
| 48 | 33, 44, 46, 47 | qusbas 17484 | . . . 4 ⊢ (𝜑 → (𝑊 / ∼ ) = (Base‘𝐺)) |
| 49 | 29, 48 | eqtr4id 2783 | . . 3 ⊢ (𝜑 → 𝑋 = (𝑊 / ∼ )) |
| 50 | 49 | feq2d 6654 | . 2 ⊢ (𝜑 → (𝐸:𝑋⟶𝐵 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
| 51 | 28, 50 | mpbird 257 | 1 ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 ifcif 4484 〈cop 4591 ↦ cmpt 5183 I cid 5525 × cxp 5629 ran crn 5632 ∘ ccom 5635 Oncon0 6320 Fun wfun 6493 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 2oc2o 8405 Er wer 8645 [cec 8646 / cqs 8647 Word cword 14454 Basecbs 17155 Σg cgsu 17379 /s cqus 17444 Mndcmnd 18643 freeMndcfrmd 18756 Grpcgrp 18847 invgcminusg 18848 ~FG cefg 19620 freeGrpcfrgp 19621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-word 14455 df-concat 14512 df-s1 14537 df-substr 14582 df-pfx 14612 df-splice 14691 df-s2 14790 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-0g 17380 df-gsum 17381 df-imas 17447 df-qus 17448 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-frmd 18758 df-grp 18850 df-minusg 18851 df-efg 19623 df-frgp 19624 |
| This theorem is referenced by: frgpupval 19688 frgpup1 19689 |
| Copyright terms: Public domain | W3C validator |