MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpupf Structured version   Visualization version   GIF version

Theorem frgpupf 18501
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
frgpup.r = ( ~FG𝐼)
frgpup.g 𝐺 = (freeGrp‘𝐼)
frgpup.x 𝑋 = (Base‘𝐺)
frgpup.e 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
Assertion
Ref Expression
frgpupf (𝜑𝐸:𝑋𝐵)
Distinct variable groups:   𝑦,𝑔,𝑧   𝑔,𝐻   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝐵,𝑔,𝑦,𝑧   𝑇,𝑔   ,𝑔   𝜑,𝑔,𝑦,𝑧   𝑦,𝐼,𝑧   𝑔,𝑊
Allowed substitution hints:   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑔)   𝐹(𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐻(𝑦,𝑧)   𝐼(𝑔)   𝑁(𝑔)   𝑉(𝑦,𝑧,𝑔)   𝑊(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem frgpupf
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 frgpup.e . . . 4 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
2 frgpup.h . . . . . . 7 (𝜑𝐻 ∈ Grp)
3 grpmnd 17745 . . . . . . 7 (𝐻 ∈ Grp → 𝐻 ∈ Mnd)
42, 3syl 17 . . . . . 6 (𝜑𝐻 ∈ Mnd)
54adantr 473 . . . . 5 ((𝜑𝑔𝑊) → 𝐻 ∈ Mnd)
6 frgpup.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
7 fviss 6481 . . . . . . . 8 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
86, 7eqsstri 3831 . . . . . . 7 𝑊 ⊆ Word (𝐼 × 2𝑜)
98sseli 3794 . . . . . 6 (𝑔𝑊𝑔 ∈ Word (𝐼 × 2𝑜))
10 frgpup.b . . . . . . 7 𝐵 = (Base‘𝐻)
11 frgpup.n . . . . . . 7 𝑁 = (invg𝐻)
12 frgpup.t . . . . . . 7 𝑇 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
13 frgpup.i . . . . . . 7 (𝜑𝐼𝑉)
14 frgpup.a . . . . . . 7 (𝜑𝐹:𝐼𝐵)
1510, 11, 12, 2, 13, 14frgpuptf 18498 . . . . . 6 (𝜑𝑇:(𝐼 × 2𝑜)⟶𝐵)
16 wrdco 13916 . . . . . 6 ((𝑔 ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇𝑔) ∈ Word 𝐵)
179, 15, 16syl2anr 591 . . . . 5 ((𝜑𝑔𝑊) → (𝑇𝑔) ∈ Word 𝐵)
1810gsumwcl 17692 . . . . 5 ((𝐻 ∈ Mnd ∧ (𝑇𝑔) ∈ Word 𝐵) → (𝐻 Σg (𝑇𝑔)) ∈ 𝐵)
195, 17, 18syl2anc 580 . . . 4 ((𝜑𝑔𝑊) → (𝐻 Σg (𝑇𝑔)) ∈ 𝐵)
20 frgpup.r . . . . . 6 = ( ~FG𝐼)
216, 20efger 18444 . . . . 5 Er 𝑊
2221a1i 11 . . . 4 (𝜑 Er 𝑊)
236fvexi 6425 . . . . 5 𝑊 ∈ V
2423a1i 11 . . . 4 (𝜑𝑊 ∈ V)
25 coeq2 5484 . . . . 5 (𝑔 = → (𝑇𝑔) = (𝑇))
2625oveq2d 6894 . . . 4 (𝑔 = → (𝐻 Σg (𝑇𝑔)) = (𝐻 Σg (𝑇)))
2710, 11, 12, 2, 13, 14, 6, 20frgpuplem 18500 . . . 4 ((𝜑𝑔 ) → (𝐻 Σg (𝑇𝑔)) = (𝐻 Σg (𝑇)))
281, 19, 22, 24, 26, 27qliftfund 8071 . . 3 (𝜑 → Fun 𝐸)
291, 19, 22, 24qliftf 8073 . . 3 (𝜑 → (Fun 𝐸𝐸:(𝑊 / )⟶𝐵))
3028, 29mpbid 224 . 2 (𝜑𝐸:(𝑊 / )⟶𝐵)
31 frgpup.g . . . . . . 7 𝐺 = (freeGrp‘𝐼)
32 eqid 2799 . . . . . . 7 (freeMnd‘(𝐼 × 2𝑜)) = (freeMnd‘(𝐼 × 2𝑜))
3331, 32, 20frgpval 18486 . . . . . 6 (𝐼𝑉𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ))
3413, 33syl 17 . . . . 5 (𝜑𝐺 = ((freeMnd‘(𝐼 × 2𝑜)) /s ))
35 2on 7808 . . . . . . . . 9 2𝑜 ∈ On
36 xpexg 7194 . . . . . . . . 9 ((𝐼𝑉 ∧ 2𝑜 ∈ On) → (𝐼 × 2𝑜) ∈ V)
3713, 35, 36sylancl 581 . . . . . . . 8 (𝜑 → (𝐼 × 2𝑜) ∈ V)
38 wrdexg 13544 . . . . . . . 8 ((𝐼 × 2𝑜) ∈ V → Word (𝐼 × 2𝑜) ∈ V)
39 fvi 6480 . . . . . . . 8 (Word (𝐼 × 2𝑜) ∈ V → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
4037, 38, 393syl 18 . . . . . . 7 (𝜑 → ( I ‘Word (𝐼 × 2𝑜)) = Word (𝐼 × 2𝑜))
416, 40syl5eq 2845 . . . . . 6 (𝜑𝑊 = Word (𝐼 × 2𝑜))
42 eqid 2799 . . . . . . . 8 (Base‘(freeMnd‘(𝐼 × 2𝑜))) = (Base‘(freeMnd‘(𝐼 × 2𝑜)))
4332, 42frmdbas 17705 . . . . . . 7 ((𝐼 × 2𝑜) ∈ V → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜))
4437, 43syl 17 . . . . . 6 (𝜑 → (Base‘(freeMnd‘(𝐼 × 2𝑜))) = Word (𝐼 × 2𝑜))
4541, 44eqtr4d 2836 . . . . 5 (𝜑𝑊 = (Base‘(freeMnd‘(𝐼 × 2𝑜))))
4620fvexi 6425 . . . . . 6 ∈ V
4746a1i 11 . . . . 5 (𝜑 ∈ V)
48 fvexd 6426 . . . . 5 (𝜑 → (freeMnd‘(𝐼 × 2𝑜)) ∈ V)
4934, 45, 47, 48qusbas 16520 . . . 4 (𝜑 → (𝑊 / ) = (Base‘𝐺))
50 frgpup.x . . . 4 𝑋 = (Base‘𝐺)
5149, 50syl6reqr 2852 . . 3 (𝜑𝑋 = (𝑊 / ))
5251feq2d 6242 . 2 (𝜑 → (𝐸:𝑋𝐵𝐸:(𝑊 / )⟶𝐵))
5330, 52mpbird 249 1 (𝜑𝐸:𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  Vcvv 3385  c0 4115  ifcif 4277  cop 4374  cmpt 4922   I cid 5219   × cxp 5310  ran crn 5313  ccom 5316  Oncon0 5941  Fun wfun 6095  wf 6097  cfv 6101  (class class class)co 6878  cmpt2 6880  2𝑜c2o 7793   Er wer 7979  [cec 7980   / cqs 7981  Word cword 13534  Basecbs 16184   Σg cgsu 16416   /s cqus 16480  Mndcmnd 17609  freeMndcfrmd 17700  Grpcgrp 17738  invgcminusg 17739   ~FG cefg 18432  freeGrpcfrgp 18433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-ot 4377  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-ec 7984  df-qs 7988  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-inf 8591  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-fz 12581  df-fzo 12721  df-seq 13056  df-hash 13371  df-word 13535  df-concat 13591  df-s1 13616  df-substr 13665  df-pfx 13714  df-splice 13821  df-s2 13933  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-0g 16417  df-gsum 16418  df-imas 16483  df-qus 16484  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-frmd 17702  df-grp 17741  df-minusg 17742  df-efg 18435  df-frgp 18436
This theorem is referenced by:  frgpupval  18502  frgpup1  18503
  Copyright terms: Public domain W3C validator