| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgpupf | Structured version Visualization version GIF version | ||
| Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
| frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
| frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
| frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
| frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
| frgpup.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| frgpup.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| frgpup.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
| frgpup.x | ⊢ 𝑋 = (Base‘𝐺) |
| frgpup.e | ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) |
| Ref | Expression |
|---|---|
| frgpupf | ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.e | . . . 4 ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) | |
| 2 | frgpup.h | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
| 3 | 2 | grpmndd 18885 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| 4 | frgpup.w | . . . . . . . 8 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 5 | fviss 6941 | . . . . . . . 8 ⊢ ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o) | |
| 6 | 4, 5 | eqsstri 3996 | . . . . . . 7 ⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
| 7 | 6 | sseli 3945 | . . . . . 6 ⊢ (𝑔 ∈ 𝑊 → 𝑔 ∈ Word (𝐼 × 2o)) |
| 8 | frgpup.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐻) | |
| 9 | frgpup.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝐻) | |
| 10 | frgpup.t | . . . . . . 7 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
| 11 | frgpup.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 12 | frgpup.a | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
| 13 | 8, 9, 10, 2, 11, 12 | frgpuptf 19707 | . . . . . 6 ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
| 14 | wrdco 14804 | . . . . . 6 ⊢ ((𝑔 ∈ Word (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) | |
| 15 | 7, 13, 14 | syl2anr 597 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝑇 ∘ 𝑔) ∈ Word 𝐵) |
| 16 | 8 | gsumwcl 18773 | . . . . 5 ⊢ ((𝐻 ∈ Mnd ∧ (𝑇 ∘ 𝑔) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
| 17 | 3, 15, 16 | syl2an2r 685 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ 𝐵) |
| 18 | frgpup.r | . . . . . 6 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 19 | 4, 18 | efger 19655 | . . . . 5 ⊢ ∼ Er 𝑊 |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (𝜑 → ∼ Er 𝑊) |
| 21 | 4 | fvexi 6875 | . . . . 5 ⊢ 𝑊 ∈ V |
| 22 | 21 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ V) |
| 23 | coeq2 5825 | . . . . 5 ⊢ (𝑔 = ℎ → (𝑇 ∘ 𝑔) = (𝑇 ∘ ℎ)) | |
| 24 | 23 | oveq2d 7406 | . . . 4 ⊢ (𝑔 = ℎ → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
| 25 | 8, 9, 10, 2, 11, 12, 4, 18 | frgpuplem 19709 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∼ ℎ) → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ ℎ))) |
| 26 | 1, 17, 20, 22, 24, 25 | qliftfund 8779 | . . 3 ⊢ (𝜑 → Fun 𝐸) |
| 27 | 1, 17, 20, 22 | qliftf 8781 | . . 3 ⊢ (𝜑 → (Fun 𝐸 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
| 28 | 26, 27 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐸:(𝑊 / ∼ )⟶𝐵) |
| 29 | frgpup.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 30 | frgpup.g | . . . . . . 7 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 31 | eqid 2730 | . . . . . . 7 ⊢ (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o)) | |
| 32 | 30, 31, 18 | frgpval 19695 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ∼ )) |
| 33 | 11, 32 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ∼ )) |
| 34 | 2on 8450 | . . . . . . . . 9 ⊢ 2o ∈ On | |
| 35 | xpexg 7729 | . . . . . . . . 9 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
| 36 | 11, 34, 35 | sylancl 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 × 2o) ∈ V) |
| 37 | wrdexg 14496 | . . . . . . . 8 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
| 38 | fvi 6940 | . . . . . . . 8 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
| 39 | 36, 37, 38 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
| 40 | 4, 39 | eqtrid 2777 | . . . . . 6 ⊢ (𝜑 → 𝑊 = Word (𝐼 × 2o)) |
| 41 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o))) | |
| 42 | 31, 41 | frmdbas 18786 | . . . . . . 7 ⊢ ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o)) |
| 43 | 36, 42 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o)) |
| 44 | 40, 43 | eqtr4d 2768 | . . . . 5 ⊢ (𝜑 → 𝑊 = (Base‘(freeMnd‘(𝐼 × 2o)))) |
| 45 | 18 | fvexi 6875 | . . . . . 6 ⊢ ∼ ∈ V |
| 46 | 45 | a1i 11 | . . . . 5 ⊢ (𝜑 → ∼ ∈ V) |
| 47 | fvexd 6876 | . . . . 5 ⊢ (𝜑 → (freeMnd‘(𝐼 × 2o)) ∈ V) | |
| 48 | 33, 44, 46, 47 | qusbas 17515 | . . . 4 ⊢ (𝜑 → (𝑊 / ∼ ) = (Base‘𝐺)) |
| 49 | 29, 48 | eqtr4id 2784 | . . 3 ⊢ (𝜑 → 𝑋 = (𝑊 / ∼ )) |
| 50 | 49 | feq2d 6675 | . 2 ⊢ (𝜑 → (𝐸:𝑋⟶𝐵 ↔ 𝐸:(𝑊 / ∼ )⟶𝐵)) |
| 51 | 28, 50 | mpbird 257 | 1 ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 ifcif 4491 〈cop 4598 ↦ cmpt 5191 I cid 5535 × cxp 5639 ran crn 5642 ∘ ccom 5645 Oncon0 6335 Fun wfun 6508 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 2oc2o 8431 Er wer 8671 [cec 8672 / cqs 8673 Word cword 14485 Basecbs 17186 Σg cgsu 17410 /s cqus 17475 Mndcmnd 18668 freeMndcfrmd 18781 Grpcgrp 18872 invgcminusg 18873 ~FG cefg 19643 freeGrpcfrgp 19644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-ec 8676 df-qs 8680 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-substr 14613 df-pfx 14643 df-splice 14722 df-s2 14821 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-0g 17411 df-gsum 17412 df-imas 17478 df-qus 17479 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-frmd 18783 df-grp 18875 df-minusg 18876 df-efg 19646 df-frgp 19647 |
| This theorem is referenced by: frgpupval 19711 frgpup1 19712 |
| Copyright terms: Public domain | W3C validator |