Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpeccl Structured version   Visualization version   GIF version

Theorem frgpeccl 18886
 Description: Closure of the quotient map in a free group. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
frgp0.m 𝐺 = (freeGrp‘𝐼)
frgp0.r = ( ~FG𝐼)
frgpeccl.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpeccl.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
frgpeccl (𝑋𝑊 → [𝑋] 𝐵)

Proof of Theorem frgpeccl
StepHypRef Expression
1 frgp0.r . . . 4 = ( ~FG𝐼)
21fvexi 6683 . . 3 ∈ V
32ecelqsi 8352 . 2 (𝑋𝑊 → [𝑋] ∈ (𝑊 / ))
4 frgpeccl.w . . . . . . 7 𝑊 = ( I ‘Word (𝐼 × 2o))
54efgrcl 18840 . . . . . 6 (𝑋𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
65simpld 497 . . . . 5 (𝑋𝑊𝐼 ∈ V)
7 frgp0.m . . . . . 6 𝐺 = (freeGrp‘𝐼)
8 eqid 2821 . . . . . 6 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
97, 8, 1frgpval 18883 . . . . 5 (𝐼 ∈ V → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
106, 9syl 17 . . . 4 (𝑋𝑊𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
115simprd 498 . . . . 5 (𝑋𝑊𝑊 = Word (𝐼 × 2o))
12 2on 8110 . . . . . . 7 2o ∈ On
13 xpexg 7472 . . . . . . 7 ((𝐼 ∈ V ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
146, 12, 13sylancl 588 . . . . . 6 (𝑋𝑊 → (𝐼 × 2o) ∈ V)
15 eqid 2821 . . . . . . 7 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
168, 15frmdbas 18016 . . . . . 6 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
1714, 16syl 17 . . . . 5 (𝑋𝑊 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
1811, 17eqtr4d 2859 . . . 4 (𝑋𝑊𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
192a1i 11 . . . 4 (𝑋𝑊 ∈ V)
20 fvexd 6684 . . . 4 (𝑋𝑊 → (freeMnd‘(𝐼 × 2o)) ∈ V)
2110, 18, 19, 20qusbas 16817 . . 3 (𝑋𝑊 → (𝑊 / ) = (Base‘𝐺))
22 frgpeccl.b . . 3 𝐵 = (Base‘𝐺)
2321, 22syl6eqr 2874 . 2 (𝑋𝑊 → (𝑊 / ) = 𝐵)
243, 23eleqtrd 2915 1 (𝑋𝑊 → [𝑋] 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1533   ∈ wcel 2110  Vcvv 3494   I cid 5458   × cxp 5552  Oncon0 6190  ‘cfv 6354  (class class class)co 7155  2oc2o 8095  [cec 8286   / cqs 8287  Word cword 13860  Basecbs 16482   /s cqus 16777  freeMndcfrmd 18011   ~FG cefg 18831  freeGrpcfrgp 18832 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-ec 8290  df-qs 8294  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12892  df-fzo 13033  df-hash 13690  df-word 13861  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-imas 16780  df-qus 16781  df-frmd 18013  df-frgp 18835 This theorem is referenced by:  frgpinv  18889  frgpmhm  18890  vrgpf  18893  frgpup3lem  18902
 Copyright terms: Public domain W3C validator