| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgpeccl | Structured version Visualization version GIF version | ||
| Description: Closure of the quotient map in a free group. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| Ref | Expression |
|---|---|
| frgp0.m | ⊢ 𝐺 = (freeGrp‘𝐼) |
| frgp0.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| frgpeccl.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| frgpeccl.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| frgpeccl | ⊢ (𝑋 ∈ 𝑊 → [𝑋] ∼ ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgp0.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 2 | 1 | fvexi 6854 | . . 3 ⊢ ∼ ∈ V |
| 3 | 2 | ecelqsi 8720 | . 2 ⊢ (𝑋 ∈ 𝑊 → [𝑋] ∼ ∈ (𝑊 / ∼ )) |
| 4 | frgpeccl.w | . . . . . . 7 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 5 | 4 | efgrcl 19621 | . . . . . 6 ⊢ (𝑋 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o))) |
| 6 | 5 | simpld 494 | . . . . 5 ⊢ (𝑋 ∈ 𝑊 → 𝐼 ∈ V) |
| 7 | frgp0.m | . . . . . 6 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 8 | eqid 2729 | . . . . . 6 ⊢ (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o)) | |
| 9 | 7, 8, 1 | frgpval 19664 | . . . . 5 ⊢ (𝐼 ∈ V → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ∼ )) |
| 10 | 6, 9 | syl 17 | . . . 4 ⊢ (𝑋 ∈ 𝑊 → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ∼ )) |
| 11 | 5 | simprd 495 | . . . . 5 ⊢ (𝑋 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2o)) |
| 12 | 2on 8424 | . . . . . . 7 ⊢ 2o ∈ On | |
| 13 | xpexg 7706 | . . . . . . 7 ⊢ ((𝐼 ∈ V ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
| 14 | 6, 12, 13 | sylancl 586 | . . . . . 6 ⊢ (𝑋 ∈ 𝑊 → (𝐼 × 2o) ∈ V) |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o))) | |
| 16 | 8, 15 | frmdbas 18755 | . . . . . 6 ⊢ ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o)) |
| 17 | 14, 16 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ 𝑊 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o)) |
| 18 | 11, 17 | eqtr4d 2767 | . . . 4 ⊢ (𝑋 ∈ 𝑊 → 𝑊 = (Base‘(freeMnd‘(𝐼 × 2o)))) |
| 19 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ 𝑊 → ∼ ∈ V) |
| 20 | fvexd 6855 | . . . 4 ⊢ (𝑋 ∈ 𝑊 → (freeMnd‘(𝐼 × 2o)) ∈ V) | |
| 21 | 10, 18, 19, 20 | qusbas 17484 | . . 3 ⊢ (𝑋 ∈ 𝑊 → (𝑊 / ∼ ) = (Base‘𝐺)) |
| 22 | frgpeccl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 23 | 21, 22 | eqtr4di 2782 | . 2 ⊢ (𝑋 ∈ 𝑊 → (𝑊 / ∼ ) = 𝐵) |
| 24 | 3, 23 | eleqtrd 2830 | 1 ⊢ (𝑋 ∈ 𝑊 → [𝑋] ∼ ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 I cid 5525 × cxp 5629 Oncon0 6320 ‘cfv 6499 (class class class)co 7369 2oc2o 8405 [cec 8646 / cqs 8647 Word cword 14454 Basecbs 17155 /s cqus 17444 freeMndcfrmd 18750 ~FG cefg 19612 freeGrpcfrgp 19613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-imas 17447 df-qus 17448 df-frmd 18752 df-frgp 19616 |
| This theorem is referenced by: frgpinv 19670 frgpmhm 19671 vrgpf 19674 frgpup3lem 19683 |
| Copyright terms: Public domain | W3C validator |