MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpeccl Structured version   Visualization version   GIF version

Theorem frgpeccl 18560
Description: Closure of the quotient map in a free group. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
frgp0.m 𝐺 = (freeGrp‘𝐼)
frgp0.r = ( ~FG𝐼)
frgpeccl.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpeccl.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
frgpeccl (𝑋𝑊 → [𝑋] 𝐵)

Proof of Theorem frgpeccl
StepHypRef Expression
1 frgp0.r . . . 4 = ( ~FG𝐼)
21fvexi 6460 . . 3 ∈ V
32ecelqsi 8086 . 2 (𝑋𝑊 → [𝑋] ∈ (𝑊 / ))
4 frgpeccl.w . . . . . . 7 𝑊 = ( I ‘Word (𝐼 × 2o))
54efgrcl 18512 . . . . . 6 (𝑋𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
65simpld 490 . . . . 5 (𝑋𝑊𝐼 ∈ V)
7 frgp0.m . . . . . 6 𝐺 = (freeGrp‘𝐼)
8 eqid 2778 . . . . . 6 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
97, 8, 1frgpval 18557 . . . . 5 (𝐼 ∈ V → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
106, 9syl 17 . . . 4 (𝑋𝑊𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
115simprd 491 . . . . 5 (𝑋𝑊𝑊 = Word (𝐼 × 2o))
12 2on 7852 . . . . . . 7 2o ∈ On
13 xpexg 7237 . . . . . . 7 ((𝐼 ∈ V ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
146, 12, 13sylancl 580 . . . . . 6 (𝑋𝑊 → (𝐼 × 2o) ∈ V)
15 eqid 2778 . . . . . . 7 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
168, 15frmdbas 17776 . . . . . 6 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
1714, 16syl 17 . . . . 5 (𝑋𝑊 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
1811, 17eqtr4d 2817 . . . 4 (𝑋𝑊𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
192a1i 11 . . . 4 (𝑋𝑊 ∈ V)
20 fvexd 6461 . . . 4 (𝑋𝑊 → (freeMnd‘(𝐼 × 2o)) ∈ V)
2110, 18, 19, 20qusbas 16591 . . 3 (𝑋𝑊 → (𝑊 / ) = (Base‘𝐺))
22 frgpeccl.b . . 3 𝐵 = (Base‘𝐺)
2321, 22syl6eqr 2832 . 2 (𝑋𝑊 → (𝑊 / ) = 𝐵)
243, 23eleqtrd 2861 1 (𝑋𝑊 → [𝑋] 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  Vcvv 3398   I cid 5260   × cxp 5353  Oncon0 5976  cfv 6135  (class class class)co 6922  2oc2o 7837  [cec 8024   / cqs 8025  Word cword 13599  Basecbs 16255   /s cqus 16551  freeMndcfrmd 17771   ~FG cefg 18503  freeGrpcfrgp 18504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-ec 8028  df-qs 8032  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-fz 12644  df-fzo 12785  df-hash 13436  df-word 13600  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-imas 16554  df-qus 16555  df-frmd 17773  df-frgp 18507
This theorem is referenced by:  frgpinv  18563  frgpmhm  18564  vrgpf  18567  frgpup3lem  18576
  Copyright terms: Public domain W3C validator