![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgpeccl | Structured version Visualization version GIF version |
Description: Closure of the quotient map in a free group. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
frgp0.m | β’ πΊ = (freeGrpβπΌ) |
frgp0.r | β’ βΌ = ( ~FG βπΌ) |
frgpeccl.w | β’ π = ( I βWord (πΌ Γ 2o)) |
frgpeccl.b | β’ π΅ = (BaseβπΊ) |
Ref | Expression |
---|---|
frgpeccl | β’ (π β π β [π] βΌ β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgp0.r | . . . 4 β’ βΌ = ( ~FG βπΌ) | |
2 | 1 | fvexi 6904 | . . 3 β’ βΌ β V |
3 | 2 | ecelqsi 8788 | . 2 β’ (π β π β [π] βΌ β (π / βΌ )) |
4 | frgpeccl.w | . . . . . . 7 β’ π = ( I βWord (πΌ Γ 2o)) | |
5 | 4 | efgrcl 19672 | . . . . . 6 β’ (π β π β (πΌ β V β§ π = Word (πΌ Γ 2o))) |
6 | 5 | simpld 493 | . . . . 5 β’ (π β π β πΌ β V) |
7 | frgp0.m | . . . . . 6 β’ πΊ = (freeGrpβπΌ) | |
8 | eqid 2725 | . . . . . 6 β’ (freeMndβ(πΌ Γ 2o)) = (freeMndβ(πΌ Γ 2o)) | |
9 | 7, 8, 1 | frgpval 19715 | . . . . 5 β’ (πΌ β V β πΊ = ((freeMndβ(πΌ Γ 2o)) /s βΌ )) |
10 | 6, 9 | syl 17 | . . . 4 β’ (π β π β πΊ = ((freeMndβ(πΌ Γ 2o)) /s βΌ )) |
11 | 5 | simprd 494 | . . . . 5 β’ (π β π β π = Word (πΌ Γ 2o)) |
12 | 2on 8497 | . . . . . . 7 β’ 2o β On | |
13 | xpexg 7748 | . . . . . . 7 β’ ((πΌ β V β§ 2o β On) β (πΌ Γ 2o) β V) | |
14 | 6, 12, 13 | sylancl 584 | . . . . . 6 β’ (π β π β (πΌ Γ 2o) β V) |
15 | eqid 2725 | . . . . . . 7 β’ (Baseβ(freeMndβ(πΌ Γ 2o))) = (Baseβ(freeMndβ(πΌ Γ 2o))) | |
16 | 8, 15 | frmdbas 18806 | . . . . . 6 β’ ((πΌ Γ 2o) β V β (Baseβ(freeMndβ(πΌ Γ 2o))) = Word (πΌ Γ 2o)) |
17 | 14, 16 | syl 17 | . . . . 5 β’ (π β π β (Baseβ(freeMndβ(πΌ Γ 2o))) = Word (πΌ Γ 2o)) |
18 | 11, 17 | eqtr4d 2768 | . . . 4 β’ (π β π β π = (Baseβ(freeMndβ(πΌ Γ 2o)))) |
19 | 2 | a1i 11 | . . . 4 β’ (π β π β βΌ β V) |
20 | fvexd 6905 | . . . 4 β’ (π β π β (freeMndβ(πΌ Γ 2o)) β V) | |
21 | 10, 18, 19, 20 | qusbas 17524 | . . 3 β’ (π β π β (π / βΌ ) = (BaseβπΊ)) |
22 | frgpeccl.b | . . 3 β’ π΅ = (BaseβπΊ) | |
23 | 21, 22 | eqtr4di 2783 | . 2 β’ (π β π β (π / βΌ ) = π΅) |
24 | 3, 23 | eleqtrd 2827 | 1 β’ (π β π β [π] βΌ β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3463 I cid 5567 Γ cxp 5668 Oncon0 6362 βcfv 6541 (class class class)co 7414 2oc2o 8477 [cec 8719 / cqs 8720 Word cword 14494 Basecbs 17177 /s cqus 17484 freeMndcfrmd 18801 ~FG cefg 19663 freeGrpcfrgp 19664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-2o 8484 df-er 8721 df-ec 8723 df-qs 8727 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-sup 9463 df-inf 9464 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-fz 13515 df-fzo 13658 df-hash 14320 df-word 14495 df-struct 17113 df-slot 17148 df-ndx 17160 df-base 17178 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-ip 17248 df-tset 17249 df-ple 17250 df-ds 17252 df-imas 17487 df-qus 17488 df-frmd 18803 df-frgp 19667 |
This theorem is referenced by: frgpinv 19721 frgpmhm 19722 vrgpf 19725 frgpup3lem 19734 |
Copyright terms: Public domain | W3C validator |