MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpeccl Structured version   Visualization version   GIF version

Theorem frgpeccl 19640
Description: Closure of the quotient map in a free group. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
frgp0.m 𝐺 = (freeGrp‘𝐼)
frgp0.r = ( ~FG𝐼)
frgpeccl.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpeccl.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
frgpeccl (𝑋𝑊 → [𝑋] 𝐵)

Proof of Theorem frgpeccl
StepHypRef Expression
1 frgp0.r . . . 4 = ( ~FG𝐼)
21fvexi 6836 . . 3 ∈ V
32ecelqsi 8697 . 2 (𝑋𝑊 → [𝑋] ∈ (𝑊 / ))
4 frgpeccl.w . . . . . . 7 𝑊 = ( I ‘Word (𝐼 × 2o))
54efgrcl 19594 . . . . . 6 (𝑋𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
65simpld 494 . . . . 5 (𝑋𝑊𝐼 ∈ V)
7 frgp0.m . . . . . 6 𝐺 = (freeGrp‘𝐼)
8 eqid 2729 . . . . . 6 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
97, 8, 1frgpval 19637 . . . . 5 (𝐼 ∈ V → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
106, 9syl 17 . . . 4 (𝑋𝑊𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
115simprd 495 . . . . 5 (𝑋𝑊𝑊 = Word (𝐼 × 2o))
12 2on 8401 . . . . . . 7 2o ∈ On
13 xpexg 7686 . . . . . . 7 ((𝐼 ∈ V ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
146, 12, 13sylancl 586 . . . . . 6 (𝑋𝑊 → (𝐼 × 2o) ∈ V)
15 eqid 2729 . . . . . . 7 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
168, 15frmdbas 18726 . . . . . 6 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
1714, 16syl 17 . . . . 5 (𝑋𝑊 → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
1811, 17eqtr4d 2767 . . . 4 (𝑋𝑊𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
192a1i 11 . . . 4 (𝑋𝑊 ∈ V)
20 fvexd 6837 . . . 4 (𝑋𝑊 → (freeMnd‘(𝐼 × 2o)) ∈ V)
2110, 18, 19, 20qusbas 17449 . . 3 (𝑋𝑊 → (𝑊 / ) = (Base‘𝐺))
22 frgpeccl.b . . 3 𝐵 = (Base‘𝐺)
2321, 22eqtr4di 2782 . 2 (𝑋𝑊 → (𝑊 / ) = 𝐵)
243, 23eleqtrd 2830 1 (𝑋𝑊 → [𝑋] 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436   I cid 5513   × cxp 5617  Oncon0 6307  cfv 6482  (class class class)co 7349  2oc2o 8382  [cec 8623   / cqs 8624  Word cword 14420  Basecbs 17120   /s cqus 17409  freeMndcfrmd 18721   ~FG cefg 19585  freeGrpcfrgp 19586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-imas 17412  df-qus 17413  df-frmd 18723  df-frgp 19589
This theorem is referenced by:  frgpinv  19643  frgpmhm  19644  vrgpf  19647  frgpup3lem  19656
  Copyright terms: Public domain W3C validator