Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpadd Structured version   Visualization version   GIF version

 Description: Addition in the free group is given by concatenation. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
frgpadd.w 𝑊 = ( I ‘Word (𝐼 × 2o))
Assertion
Ref Expression
frgpadd ((𝐴𝑊𝐵𝑊) → ([𝐴] + [𝐵] ) = [(𝐴 ++ 𝐵)] )

Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . 3 ((𝐴𝑊𝐵𝑊) → 𝐴𝑊)
2 simpr 488 . . 3 ((𝐴𝑊𝐵𝑊) → 𝐵𝑊)
3 frgpadd.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2o))
43efgrcl 18837 . . . . . . 7 (𝐴𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
54adantr 484 . . . . . 6 ((𝐴𝑊𝐵𝑊) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
65simpld 498 . . . . 5 ((𝐴𝑊𝐵𝑊) → 𝐼 ∈ V)
7 frgpadd.g . . . . . 6 𝐺 = (freeGrp‘𝐼)
8 eqid 2801 . . . . . 6 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
9 frgpadd.r . . . . . 6 = ( ~FG𝐼)
107, 8, 9frgpval 18880 . . . . 5 (𝐼 ∈ V → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
116, 10syl 17 . . . 4 ((𝐴𝑊𝐵𝑊) → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
125simprd 499 . . . . 5 ((𝐴𝑊𝐵𝑊) → 𝑊 = Word (𝐼 × 2o))
13 2on 8098 . . . . . . 7 2o ∈ On
14 xpexg 7457 . . . . . . 7 ((𝐼 ∈ V ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
156, 13, 14sylancl 589 . . . . . 6 ((𝐴𝑊𝐵𝑊) → (𝐼 × 2o) ∈ V)
16 eqid 2801 . . . . . . 7 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
178, 16frmdbas 18013 . . . . . 6 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
1815, 17syl 17 . . . . 5 ((𝐴𝑊𝐵𝑊) → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
1912, 18eqtr4d 2839 . . . 4 ((𝐴𝑊𝐵𝑊) → 𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
203, 9efger 18840 . . . . 5 Er 𝑊
2120a1i 11 . . . 4 ((𝐴𝑊𝐵𝑊) → Er 𝑊)
228frmdmnd 18020 . . . . 5 ((𝐼 × 2o) ∈ V → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
2315, 22syl 17 . . . 4 ((𝐴𝑊𝐵𝑊) → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
24 eqid 2801 . . . . . 6 (+g‘(freeMnd‘(𝐼 × 2o))) = (+g‘(freeMnd‘(𝐼 × 2o)))
257, 8, 9, 24frgpcpbl 18881 . . . . 5 ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2o)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑))
2625a1i 11 . . . 4 ((𝐴𝑊𝐵𝑊) → ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2o)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑)))
2723adantr 484 . . . . . 6 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
28 simprl 770 . . . . . . 7 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → 𝑏𝑊)
2919adantr 484 . . . . . . 7 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → 𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
3028, 29eleqtrd 2895 . . . . . 6 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → 𝑏 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
31 simprr 772 . . . . . . 7 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → 𝑑𝑊)
3231, 29eleqtrd 2895 . . . . . 6 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → 𝑑 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3316, 24mndcl 17915 . . . . . 6 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ 𝑏 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑑 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3427, 30, 32, 33syl3anc 1368 . . . . 5 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3534, 29eleqtrrd 2896 . . . 4 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑) ∈ 𝑊)
36 frgpadd.n . . . 4 + = (+g𝐺)
3711, 19, 21, 23, 26, 35, 24, 36qusaddval 16822 . . 3 (((𝐴𝑊𝐵𝑊) ∧ 𝐴𝑊𝐵𝑊) → ([𝐴] + [𝐵] ) = [(𝐴(+g‘(freeMnd‘(𝐼 × 2o)))𝐵)] )
381, 2, 37mpd3an23 1460 . 2 ((𝐴𝑊𝐵𝑊) → ([𝐴] + [𝐵] ) = [(𝐴(+g‘(freeMnd‘(𝐼 × 2o)))𝐵)] )
391, 19eleqtrd 2895 . . . 4 ((𝐴𝑊𝐵𝑊) → 𝐴 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
402, 19eleqtrd 2895 . . . 4 ((𝐴𝑊𝐵𝑊) → 𝐵 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
418, 16, 24frmdadd 18016 . . . 4 ((𝐴 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝐵 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (𝐴(+g‘(freeMnd‘(𝐼 × 2o)))𝐵) = (𝐴 ++ 𝐵))
4239, 40, 41syl2anc 587 . . 3 ((𝐴𝑊𝐵𝑊) → (𝐴(+g‘(freeMnd‘(𝐼 × 2o)))𝐵) = (𝐴 ++ 𝐵))
4342eceq1d 8315 . 2 ((𝐴𝑊𝐵𝑊) → [(𝐴(+g‘(freeMnd‘(𝐼 × 2o)))𝐵)] = [(𝐴 ++ 𝐵)] )
4438, 43eqtrd 2836 1 ((𝐴𝑊𝐵𝑊) → ([𝐴] + [𝐵] ) = [(𝐴 ++ 𝐵)] )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  Vcvv 3444   class class class wbr 5033   I cid 5427   × cxp 5521  Oncon0 6163  ‘cfv 6328  (class class class)co 7139  2oc2o 8083   Er wer 8273  [cec 8274  Word cword 13861   ++ cconcat 13917  Basecbs 16479  +gcplusg 16561   /s cqus 16774  Mndcmnd 17907  freeMndcfrmd 18008   ~FG cefg 18828  freeGrpcfrgp 18829 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-ec 8278  df-qs 8282  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-concat 13918  df-s1 13945  df-substr 13998  df-pfx 14028  df-splice 14107  df-s2 14205  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-imas 16777  df-qus 16778  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-frmd 18010  df-efg 18831  df-frgp 18832 This theorem is referenced by:  frgpinv  18886  frgpmhm  18887  frgpup1  18897  frgpnabllem1  18990
 Copyright terms: Public domain W3C validator