MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpadd Structured version   Visualization version   GIF version

Theorem frgpadd 19782
Description: Addition in the free group is given by concatenation. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
frgpadd.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpadd.g 𝐺 = (freeGrp‘𝐼)
frgpadd.r = ( ~FG𝐼)
frgpadd.n + = (+g𝐺)
Assertion
Ref Expression
frgpadd ((𝐴𝑊𝐵𝑊) → ([𝐴] + [𝐵] ) = [(𝐴 ++ 𝐵)] )

Proof of Theorem frgpadd
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝐴𝑊𝐵𝑊) → 𝐴𝑊)
2 simpr 484 . . 3 ((𝐴𝑊𝐵𝑊) → 𝐵𝑊)
3 frgpadd.w . . . . . . . 8 𝑊 = ( I ‘Word (𝐼 × 2o))
43efgrcl 19734 . . . . . . 7 (𝐴𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
54adantr 480 . . . . . 6 ((𝐴𝑊𝐵𝑊) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
65simpld 494 . . . . 5 ((𝐴𝑊𝐵𝑊) → 𝐼 ∈ V)
7 frgpadd.g . . . . . 6 𝐺 = (freeGrp‘𝐼)
8 eqid 2736 . . . . . 6 (freeMnd‘(𝐼 × 2o)) = (freeMnd‘(𝐼 × 2o))
9 frgpadd.r . . . . . 6 = ( ~FG𝐼)
107, 8, 9frgpval 19777 . . . . 5 (𝐼 ∈ V → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
116, 10syl 17 . . . 4 ((𝐴𝑊𝐵𝑊) → 𝐺 = ((freeMnd‘(𝐼 × 2o)) /s ))
125simprd 495 . . . . 5 ((𝐴𝑊𝐵𝑊) → 𝑊 = Word (𝐼 × 2o))
13 2on 8521 . . . . . . 7 2o ∈ On
14 xpexg 7771 . . . . . . 7 ((𝐼 ∈ V ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
156, 13, 14sylancl 586 . . . . . 6 ((𝐴𝑊𝐵𝑊) → (𝐼 × 2o) ∈ V)
16 eqid 2736 . . . . . . 7 (Base‘(freeMnd‘(𝐼 × 2o))) = (Base‘(freeMnd‘(𝐼 × 2o)))
178, 16frmdbas 18866 . . . . . 6 ((𝐼 × 2o) ∈ V → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
1815, 17syl 17 . . . . 5 ((𝐴𝑊𝐵𝑊) → (Base‘(freeMnd‘(𝐼 × 2o))) = Word (𝐼 × 2o))
1912, 18eqtr4d 2779 . . . 4 ((𝐴𝑊𝐵𝑊) → 𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
203, 9efger 19737 . . . . 5 Er 𝑊
2120a1i 11 . . . 4 ((𝐴𝑊𝐵𝑊) → Er 𝑊)
228frmdmnd 18873 . . . . 5 ((𝐼 × 2o) ∈ V → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
2315, 22syl 17 . . . 4 ((𝐴𝑊𝐵𝑊) → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
24 eqid 2736 . . . . . 6 (+g‘(freeMnd‘(𝐼 × 2o))) = (+g‘(freeMnd‘(𝐼 × 2o)))
257, 8, 9, 24frgpcpbl 19778 . . . . 5 ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2o)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑))
2625a1i 11 . . . 4 ((𝐴𝑊𝐵𝑊) → ((𝑎 𝑏𝑐 𝑑) → (𝑎(+g‘(freeMnd‘(𝐼 × 2o)))𝑐) (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑)))
2723adantr 480 . . . . . 6 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → (freeMnd‘(𝐼 × 2o)) ∈ Mnd)
28 simprl 770 . . . . . . 7 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → 𝑏𝑊)
2919adantr 480 . . . . . . 7 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → 𝑊 = (Base‘(freeMnd‘(𝐼 × 2o))))
3028, 29eleqtrd 2842 . . . . . 6 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → 𝑏 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
31 simprr 772 . . . . . . 7 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → 𝑑𝑊)
3231, 29eleqtrd 2842 . . . . . 6 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → 𝑑 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3316, 24mndcl 18756 . . . . . 6 (((freeMnd‘(𝐼 × 2o)) ∈ Mnd ∧ 𝑏 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝑑 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3427, 30, 32, 33syl3anc 1372 . . . . 5 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑) ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
3534, 29eleqtrrd 2843 . . . 4 (((𝐴𝑊𝐵𝑊) ∧ (𝑏𝑊𝑑𝑊)) → (𝑏(+g‘(freeMnd‘(𝐼 × 2o)))𝑑) ∈ 𝑊)
36 frgpadd.n . . . 4 + = (+g𝐺)
3711, 19, 21, 23, 26, 35, 24, 36qusaddval 17599 . . 3 (((𝐴𝑊𝐵𝑊) ∧ 𝐴𝑊𝐵𝑊) → ([𝐴] + [𝐵] ) = [(𝐴(+g‘(freeMnd‘(𝐼 × 2o)))𝐵)] )
381, 2, 37mpd3an23 1464 . 2 ((𝐴𝑊𝐵𝑊) → ([𝐴] + [𝐵] ) = [(𝐴(+g‘(freeMnd‘(𝐼 × 2o)))𝐵)] )
391, 19eleqtrd 2842 . . . 4 ((𝐴𝑊𝐵𝑊) → 𝐴 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
402, 19eleqtrd 2842 . . . 4 ((𝐴𝑊𝐵𝑊) → 𝐵 ∈ (Base‘(freeMnd‘(𝐼 × 2o))))
418, 16, 24frmdadd 18869 . . . 4 ((𝐴 ∈ (Base‘(freeMnd‘(𝐼 × 2o))) ∧ 𝐵 ∈ (Base‘(freeMnd‘(𝐼 × 2o)))) → (𝐴(+g‘(freeMnd‘(𝐼 × 2o)))𝐵) = (𝐴 ++ 𝐵))
4239, 40, 41syl2anc 584 . . 3 ((𝐴𝑊𝐵𝑊) → (𝐴(+g‘(freeMnd‘(𝐼 × 2o)))𝐵) = (𝐴 ++ 𝐵))
4342eceq1d 8786 . 2 ((𝐴𝑊𝐵𝑊) → [(𝐴(+g‘(freeMnd‘(𝐼 × 2o)))𝐵)] = [(𝐴 ++ 𝐵)] )
4438, 43eqtrd 2776 1 ((𝐴𝑊𝐵𝑊) → ([𝐴] + [𝐵] ) = [(𝐴 ++ 𝐵)] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479   class class class wbr 5142   I cid 5576   × cxp 5682  Oncon0 6383  cfv 6560  (class class class)co 7432  2oc2o 8501   Er wer 8743  [cec 8744  Word cword 14553   ++ cconcat 14609  Basecbs 17248  +gcplusg 17298   /s cqus 17551  Mndcmnd 18748  freeMndcfrmd 18861   ~FG cefg 19725  freeGrpcfrgp 19726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-concat 14610  df-s1 14635  df-substr 14680  df-pfx 14710  df-splice 14789  df-s2 14888  df-struct 17185  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-imas 17554  df-qus 17555  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-frmd 18863  df-efg 19728  df-frgp 19729
This theorem is referenced by:  frgpinv  19783  frgpmhm  19784  frgpup1  19794  frgpnabllem1  19892
  Copyright terms: Public domain W3C validator