| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmlss | Structured version Visualization version GIF version | ||
| Description: The base set of the free module is a subspace of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| frlmpws.b | ⊢ 𝐵 = (Base‘𝐹) |
| frlmlss.u | ⊢ 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) |
| Ref | Expression |
|---|---|
| frlmlss | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐵 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmpws.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
| 2 | frlmval.f | . . . . 5 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
| 3 | 2 | frlmval 21657 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
| 4 | 3 | fveq2d 6862 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Base‘𝐹) = (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})))) |
| 5 | 1, 4 | eqtrid 2776 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐵 = (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})))) |
| 6 | simpr 484 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐼 ∈ 𝑊) | |
| 7 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ Ring) | |
| 8 | rlmlmod 21110 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (ringLMod‘𝑅) ∈ LMod) |
| 10 | fconst6g 6749 | . . . . 5 ⊢ ((ringLMod‘𝑅) ∈ LMod → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod) |
| 12 | fvex 6871 | . . . . . . . 8 ⊢ (ringLMod‘𝑅) ∈ V | |
| 13 | 12 | fvconst2 7178 | . . . . . . 7 ⊢ (𝑖 ∈ 𝐼 → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅)) |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅)) |
| 15 | 14 | fveq2d 6862 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = (Scalar‘(ringLMod‘𝑅))) |
| 16 | rlmsca 21105 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
| 17 | 16 | ad2antrr 726 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
| 18 | 15, 17 | eqtr4d 2767 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = 𝑅) |
| 19 | eqid 2729 | . . . 4 ⊢ (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) | |
| 20 | eqid 2729 | . . . 4 ⊢ (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) | |
| 21 | eqid 2729 | . . . 4 ⊢ (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) | |
| 22 | 6, 7, 11, 18, 19, 20, 21 | dsmmlss 21653 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) ∈ (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))) |
| 23 | eqid 2729 | . . . . . . . . 9 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
| 24 | eqid 2729 | . . . . . . . . 9 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
| 25 | 23, 24 | pwsval 17449 | . . . . . . . 8 ⊢ (((ringLMod‘𝑅) ∈ V ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
| 26 | 12, 25 | mpan 690 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
| 27 | 26 | adantl 481 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
| 28 | 16 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (Scalar‘(ringLMod‘𝑅)) = 𝑅) |
| 29 | 28 | adantr 480 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Scalar‘(ringLMod‘𝑅)) = 𝑅) |
| 30 | 29 | oveq1d 7402 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) |
| 31 | 27, 30 | eqtr2d 2765 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((ringLMod‘𝑅) ↑s 𝐼)) |
| 32 | 31 | fveq2d 6862 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) |
| 33 | frlmlss.u | . . . 4 ⊢ 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) | |
| 34 | 32, 33 | eqtr4di 2782 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = 𝑈) |
| 35 | 22, 34 | eleqtrd 2830 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) ∈ 𝑈) |
| 36 | 5, 35 | eqeltrd 2828 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐵 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Scalarcsca 17223 Xscprds 17408 ↑s cpws 17409 Ringcrg 20142 LModclmod 20766 LSubSpclss 20837 ringLModcrglmod 21079 ⊕m cdsmm 21640 freeLMod cfrlm 21655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-subrg 20479 df-lmod 20768 df-lss 20838 df-sra 21080 df-rgmod 21081 df-dsmm 21641 df-frlm 21656 |
| This theorem is referenced by: frlm0 21663 frlmsubgval 21674 frlmgsum 21681 frlmsplit2 21682 |
| Copyright terms: Public domain | W3C validator |