MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmlss Structured version   Visualization version   GIF version

Theorem frlmlss 20939
Description: The base set of the free module is a subspace of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmpws.b 𝐵 = (Base‘𝐹)
frlmlss.u 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
Assertion
Ref Expression
frlmlss ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵𝑈)

Proof of Theorem frlmlss
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 frlmpws.b . . 3 𝐵 = (Base‘𝐹)
2 frlmval.f . . . . 5 𝐹 = (𝑅 freeLMod 𝐼)
32frlmval 20936 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
43fveq2d 6772 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘𝐹) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
51, 4eqtrid 2791 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵 = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
6 simpr 484 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐼𝑊)
7 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 ∈ Ring)
8 rlmlmod 20456 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
98adantr 480 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (ringLMod‘𝑅) ∈ LMod)
10 fconst6g 6659 . . . . 5 ((ringLMod‘𝑅) ∈ LMod → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod)
119, 10syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod)
12 fvex 6781 . . . . . . . 8 (ringLMod‘𝑅) ∈ V
1312fvconst2 7073 . . . . . . 7 (𝑖𝐼 → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅))
1413adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅))
1514fveq2d 6772 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = (Scalar‘(ringLMod‘𝑅)))
16 rlmsca 20451 . . . . . 6 (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
1716ad2antrr 722 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
1815, 17eqtr4d 2782 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = 𝑅)
19 eqid 2739 . . . 4 (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))
20 eqid 2739 . . . 4 (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))
21 eqid 2739 . . . 4 (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)})))
226, 7, 11, 18, 19, 20, 21dsmmlss 20932 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) ∈ (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))))
23 eqid 2739 . . . . . . . . 9 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
24 eqid 2739 . . . . . . . . 9 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
2523, 24pwsval 17178 . . . . . . . 8 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2612, 25mpan 686 . . . . . . 7 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2726adantl 481 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2816eqcomd 2745 . . . . . . . 8 (𝑅 ∈ Ring → (Scalar‘(ringLMod‘𝑅)) = 𝑅)
2928adantr 480 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Scalar‘(ringLMod‘𝑅)) = 𝑅)
3029oveq1d 7283 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))
3127, 30eqtr2d 2780 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((ringLMod‘𝑅) ↑s 𝐼))
3231fveq2d 6772 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
33 frlmlss.u . . . 4 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
3432, 33eqtr4di 2797 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = 𝑈)
3522, 34eleqtrd 2842 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) ∈ 𝑈)
365, 35eqeltrd 2840 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  {csn 4566   × cxp 5586  wf 6426  cfv 6430  (class class class)co 7268  Basecbs 16893  Scalarcsca 16946  Xscprds 17137  s cpws 17138  Ringcrg 19764  LModclmod 20104  LSubSpclss 20174  ringLModcrglmod 20412  m cdsmm 20919   freeLMod cfrlm 20934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-hom 16967  df-cco 16968  df-0g 17133  df-prds 17139  df-pws 17141  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-grp 18561  df-minusg 18562  df-sbg 18563  df-subg 18733  df-mgp 19702  df-ur 19719  df-ring 19766  df-subrg 20003  df-lmod 20106  df-lss 20175  df-sra 20415  df-rgmod 20416  df-dsmm 20920  df-frlm 20935
This theorem is referenced by:  frlm0  20942  frlmsubgval  20953  frlmgsum  20960  frlmsplit2  20961
  Copyright terms: Public domain W3C validator