MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmlss Structured version   Visualization version   GIF version

Theorem frlmlss 20417
Description: The base set of the free module is a subspace of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmpws.b 𝐵 = (Base‘𝐹)
frlmlss.u 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
Assertion
Ref Expression
frlmlss ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵𝑈)

Proof of Theorem frlmlss
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 frlmpws.b . . 3 𝐵 = (Base‘𝐹)
2 frlmval.f . . . . 5 𝐹 = (𝑅 freeLMod 𝐼)
32frlmval 20414 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
43fveq2d 6413 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘𝐹) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
51, 4syl5eq 2843 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵 = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
6 simpr 478 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐼𝑊)
7 simpl 475 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 ∈ Ring)
8 rlmlmod 19525 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
98adantr 473 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (ringLMod‘𝑅) ∈ LMod)
10 fconst6g 6307 . . . . 5 ((ringLMod‘𝑅) ∈ LMod → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod)
119, 10syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod)
12 fvex 6422 . . . . . . . 8 (ringLMod‘𝑅) ∈ V
1312fvconst2 6696 . . . . . . 7 (𝑖𝐼 → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅))
1413adantl 474 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅))
1514fveq2d 6413 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = (Scalar‘(ringLMod‘𝑅)))
16 rlmsca 19520 . . . . . 6 (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
1716ad2antrr 718 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
1815, 17eqtr4d 2834 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = 𝑅)
19 eqid 2797 . . . 4 (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))
20 eqid 2797 . . . 4 (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))
21 eqid 2797 . . . 4 (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)})))
226, 7, 11, 18, 19, 20, 21dsmmlss 20410 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) ∈ (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))))
23 eqid 2797 . . . . . . . . 9 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
24 eqid 2797 . . . . . . . . 9 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
2523, 24pwsval 16458 . . . . . . . 8 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2612, 25mpan 682 . . . . . . 7 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2726adantl 474 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2816eqcomd 2803 . . . . . . . 8 (𝑅 ∈ Ring → (Scalar‘(ringLMod‘𝑅)) = 𝑅)
2928adantr 473 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Scalar‘(ringLMod‘𝑅)) = 𝑅)
3029oveq1d 6891 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))
3127, 30eqtr2d 2832 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((ringLMod‘𝑅) ↑s 𝐼))
3231fveq2d 6413 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
33 frlmlss.u . . . 4 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
3432, 33syl6eqr 2849 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = 𝑈)
3522, 34eleqtrd 2878 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) ∈ 𝑈)
365, 35eqeltrd 2876 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  Vcvv 3383  {csn 4366   × cxp 5308  wf 6095  cfv 6099  (class class class)co 6876  Basecbs 16181  Scalarcsca 16267  Xscprds 16418  s cpws 16419  Ringcrg 18860  LModclmod 19178  LSubSpclss 19247  ringLModcrglmod 19489  m cdsmm 20397   freeLMod cfrlm 20412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-map 8095  df-ixp 8147  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-sup 8588  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-z 11663  df-dec 11780  df-uz 11927  df-fz 12577  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-sca 16280  df-vsca 16281  df-ip 16282  df-tset 16283  df-ple 16284  df-ds 16286  df-hom 16288  df-cco 16289  df-0g 16414  df-prds 16420  df-pws 16422  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-grp 17738  df-minusg 17739  df-sbg 17740  df-subg 17901  df-mgp 18803  df-ur 18815  df-ring 18862  df-subrg 19093  df-lmod 19180  df-lss 19248  df-sra 19492  df-rgmod 19493  df-dsmm 20398  df-frlm 20413
This theorem is referenced by:  frlm0  20420  frlmsubgval  20430  frlmgsum  20433  frlmsplit2  20434
  Copyright terms: Public domain W3C validator