MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmlss Structured version   Visualization version   GIF version

Theorem frlmlss 21711
Description: The base set of the free module is a subspace of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmpws.b 𝐵 = (Base‘𝐹)
frlmlss.u 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
Assertion
Ref Expression
frlmlss ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵𝑈)

Proof of Theorem frlmlss
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 frlmpws.b . . 3 𝐵 = (Base‘𝐹)
2 frlmval.f . . . . 5 𝐹 = (𝑅 freeLMod 𝐼)
32frlmval 21708 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
43fveq2d 6880 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘𝐹) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
51, 4eqtrid 2782 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵 = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
6 simpr 484 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐼𝑊)
7 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 ∈ Ring)
8 rlmlmod 21161 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
98adantr 480 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (ringLMod‘𝑅) ∈ LMod)
10 fconst6g 6767 . . . . 5 ((ringLMod‘𝑅) ∈ LMod → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod)
119, 10syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod)
12 fvex 6889 . . . . . . . 8 (ringLMod‘𝑅) ∈ V
1312fvconst2 7196 . . . . . . 7 (𝑖𝐼 → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅))
1413adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅))
1514fveq2d 6880 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = (Scalar‘(ringLMod‘𝑅)))
16 rlmsca 21156 . . . . . 6 (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
1716ad2antrr 726 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
1815, 17eqtr4d 2773 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = 𝑅)
19 eqid 2735 . . . 4 (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))
20 eqid 2735 . . . 4 (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))
21 eqid 2735 . . . 4 (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)})))
226, 7, 11, 18, 19, 20, 21dsmmlss 21704 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) ∈ (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))))
23 eqid 2735 . . . . . . . . 9 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
24 eqid 2735 . . . . . . . . 9 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
2523, 24pwsval 17500 . . . . . . . 8 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2612, 25mpan 690 . . . . . . 7 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2726adantl 481 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2816eqcomd 2741 . . . . . . . 8 (𝑅 ∈ Ring → (Scalar‘(ringLMod‘𝑅)) = 𝑅)
2928adantr 480 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Scalar‘(ringLMod‘𝑅)) = 𝑅)
3029oveq1d 7420 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))
3127, 30eqtr2d 2771 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((ringLMod‘𝑅) ↑s 𝐼))
3231fveq2d 6880 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
33 frlmlss.u . . . 4 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
3432, 33eqtr4di 2788 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = 𝑈)
3522, 34eleqtrd 2836 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) ∈ 𝑈)
365, 35eqeltrd 2834 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  {csn 4601   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  Scalarcsca 17274  Xscprds 17459  s cpws 17460  Ringcrg 20193  LModclmod 20817  LSubSpclss 20888  ringLModcrglmod 21130  m cdsmm 21691   freeLMod cfrlm 21706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-prds 17461  df-pws 17463  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-subrg 20530  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707
This theorem is referenced by:  frlm0  21714  frlmsubgval  21725  frlmgsum  21732  frlmsplit2  21733
  Copyright terms: Public domain W3C validator