![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmlss | Structured version Visualization version GIF version |
Description: The base set of the free module is a subspace of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmpws.b | ⊢ 𝐵 = (Base‘𝐹) |
frlmlss.u | ⊢ 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) |
Ref | Expression |
---|---|
frlmlss | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmpws.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
2 | frlmval.f | . . . . 5 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
3 | 2 | frlmval 20414 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
4 | 3 | fveq2d 6413 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Base‘𝐹) = (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})))) |
5 | 1, 4 | syl5eq 2843 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐵 = (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})))) |
6 | simpr 478 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐼 ∈ 𝑊) | |
7 | simpl 475 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ Ring) | |
8 | rlmlmod 19525 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
9 | 8 | adantr 473 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (ringLMod‘𝑅) ∈ LMod) |
10 | fconst6g 6307 | . . . . 5 ⊢ ((ringLMod‘𝑅) ∈ LMod → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod) |
12 | fvex 6422 | . . . . . . . 8 ⊢ (ringLMod‘𝑅) ∈ V | |
13 | 12 | fvconst2 6696 | . . . . . . 7 ⊢ (𝑖 ∈ 𝐼 → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅)) |
14 | 13 | adantl 474 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅)) |
15 | 14 | fveq2d 6413 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = (Scalar‘(ringLMod‘𝑅))) |
16 | rlmsca 19520 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
17 | 16 | ad2antrr 718 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
18 | 15, 17 | eqtr4d 2834 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = 𝑅) |
19 | eqid 2797 | . . . 4 ⊢ (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) | |
20 | eqid 2797 | . . . 4 ⊢ (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) | |
21 | eqid 2797 | . . . 4 ⊢ (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) | |
22 | 6, 7, 11, 18, 19, 20, 21 | dsmmlss 20410 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) ∈ (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))) |
23 | eqid 2797 | . . . . . . . . 9 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
24 | eqid 2797 | . . . . . . . . 9 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
25 | 23, 24 | pwsval 16458 | . . . . . . . 8 ⊢ (((ringLMod‘𝑅) ∈ V ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
26 | 12, 25 | mpan 682 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
27 | 26 | adantl 474 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
28 | 16 | eqcomd 2803 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (Scalar‘(ringLMod‘𝑅)) = 𝑅) |
29 | 28 | adantr 473 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Scalar‘(ringLMod‘𝑅)) = 𝑅) |
30 | 29 | oveq1d 6891 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) |
31 | 27, 30 | eqtr2d 2832 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((ringLMod‘𝑅) ↑s 𝐼)) |
32 | 31 | fveq2d 6413 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) |
33 | frlmlss.u | . . . 4 ⊢ 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) | |
34 | 32, 33 | syl6eqr 2849 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = 𝑈) |
35 | 22, 34 | eleqtrd 2878 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) ∈ 𝑈) |
36 | 5, 35 | eqeltrd 2876 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3383 {csn 4366 × cxp 5308 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 Basecbs 16181 Scalarcsca 16267 Xscprds 16418 ↑s cpws 16419 Ringcrg 18860 LModclmod 19178 LSubSpclss 19247 ringLModcrglmod 19489 ⊕m cdsmm 20397 freeLMod cfrlm 20412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-map 8095 df-ixp 8147 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-sup 8588 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-fz 12577 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-sca 16280 df-vsca 16281 df-ip 16282 df-tset 16283 df-ple 16284 df-ds 16286 df-hom 16288 df-cco 16289 df-0g 16414 df-prds 16420 df-pws 16422 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-grp 17738 df-minusg 17739 df-sbg 17740 df-subg 17901 df-mgp 18803 df-ur 18815 df-ring 18862 df-subrg 19093 df-lmod 19180 df-lss 19248 df-sra 19492 df-rgmod 19493 df-dsmm 20398 df-frlm 20413 |
This theorem is referenced by: frlm0 20420 frlmsubgval 20430 frlmgsum 20433 frlmsplit2 20434 |
Copyright terms: Public domain | W3C validator |