MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmlss Structured version   Visualization version   GIF version

Theorem frlmlss 20870
Description: The base set of the free module is a subspace of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmpws.b 𝐵 = (Base‘𝐹)
frlmlss.u 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
Assertion
Ref Expression
frlmlss ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵𝑈)

Proof of Theorem frlmlss
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 frlmpws.b . . 3 𝐵 = (Base‘𝐹)
2 frlmval.f . . . . 5 𝐹 = (𝑅 freeLMod 𝐼)
32frlmval 20867 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
43fveq2d 6647 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘𝐹) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
51, 4syl5eq 2868 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵 = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
6 simpr 488 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐼𝑊)
7 simpl 486 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 ∈ Ring)
8 rlmlmod 19952 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
98adantr 484 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (ringLMod‘𝑅) ∈ LMod)
10 fconst6g 6541 . . . . 5 ((ringLMod‘𝑅) ∈ LMod → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod)
119, 10syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod)
12 fvex 6656 . . . . . . . 8 (ringLMod‘𝑅) ∈ V
1312fvconst2 6939 . . . . . . 7 (𝑖𝐼 → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅))
1413adantl 485 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅))
1514fveq2d 6647 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = (Scalar‘(ringLMod‘𝑅)))
16 rlmsca 19947 . . . . . 6 (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
1716ad2antrr 725 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
1815, 17eqtr4d 2859 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = 𝑅)
19 eqid 2821 . . . 4 (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))
20 eqid 2821 . . . 4 (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))
21 eqid 2821 . . . 4 (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)})))
226, 7, 11, 18, 19, 20, 21dsmmlss 20863 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) ∈ (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))))
23 eqid 2821 . . . . . . . . 9 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
24 eqid 2821 . . . . . . . . 9 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
2523, 24pwsval 16737 . . . . . . . 8 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2612, 25mpan 689 . . . . . . 7 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2726adantl 485 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2816eqcomd 2827 . . . . . . . 8 (𝑅 ∈ Ring → (Scalar‘(ringLMod‘𝑅)) = 𝑅)
2928adantr 484 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Scalar‘(ringLMod‘𝑅)) = 𝑅)
3029oveq1d 7145 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))
3127, 30eqtr2d 2857 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((ringLMod‘𝑅) ↑s 𝐼))
3231fveq2d 6647 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
33 frlmlss.u . . . 4 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
3432, 33syl6eqr 2874 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = 𝑈)
3522, 34eleqtrd 2914 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) ∈ 𝑈)
365, 35eqeltrd 2912 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3471  {csn 4540   × cxp 5526  wf 6324  cfv 6328  (class class class)co 7130  Basecbs 16461  Scalarcsca 16546  Xscprds 16697  s cpws 16698  Ringcrg 19275  LModclmod 19609  LSubSpclss 19678  ringLModcrglmod 19916  m cdsmm 20850   freeLMod cfrlm 20865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-sup 8882  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-fz 12876  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-sca 16559  df-vsca 16560  df-ip 16561  df-tset 16562  df-ple 16563  df-ds 16565  df-hom 16567  df-cco 16568  df-0g 16693  df-prds 16699  df-pws 16701  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-grp 18084  df-minusg 18085  df-sbg 18086  df-subg 18254  df-mgp 19218  df-ur 19230  df-ring 19277  df-subrg 19508  df-lmod 19611  df-lss 19679  df-sra 19919  df-rgmod 19920  df-dsmm 20851  df-frlm 20866
This theorem is referenced by:  frlm0  20873  frlmsubgval  20884  frlmgsum  20891  frlmsplit2  20892
  Copyright terms: Public domain W3C validator