| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmlss | Structured version Visualization version GIF version | ||
| Description: The base set of the free module is a subspace of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| frlmpws.b | ⊢ 𝐵 = (Base‘𝐹) |
| frlmlss.u | ⊢ 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) |
| Ref | Expression |
|---|---|
| frlmlss | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐵 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmpws.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
| 2 | frlmval.f | . . . . 5 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
| 3 | 2 | frlmval 21695 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
| 4 | 3 | fveq2d 6835 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Base‘𝐹) = (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})))) |
| 5 | 1, 4 | eqtrid 2780 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐵 = (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})))) |
| 6 | simpr 484 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐼 ∈ 𝑊) | |
| 7 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ Ring) | |
| 8 | rlmlmod 21147 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (ringLMod‘𝑅) ∈ LMod) |
| 10 | fconst6g 6720 | . . . . 5 ⊢ ((ringLMod‘𝑅) ∈ LMod → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod) |
| 12 | fvex 6844 | . . . . . . . 8 ⊢ (ringLMod‘𝑅) ∈ V | |
| 13 | 12 | fvconst2 7147 | . . . . . . 7 ⊢ (𝑖 ∈ 𝐼 → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅)) |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅)) |
| 15 | 14 | fveq2d 6835 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = (Scalar‘(ringLMod‘𝑅))) |
| 16 | rlmsca 21142 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
| 17 | 16 | ad2antrr 726 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
| 18 | 15, 17 | eqtr4d 2771 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = 𝑅) |
| 19 | eqid 2733 | . . . 4 ⊢ (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) | |
| 20 | eqid 2733 | . . . 4 ⊢ (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) | |
| 21 | eqid 2733 | . . . 4 ⊢ (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) | |
| 22 | 6, 7, 11, 18, 19, 20, 21 | dsmmlss 21691 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) ∈ (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))) |
| 23 | eqid 2733 | . . . . . . . . 9 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
| 24 | eqid 2733 | . . . . . . . . 9 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
| 25 | 23, 24 | pwsval 17400 | . . . . . . . 8 ⊢ (((ringLMod‘𝑅) ∈ V ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
| 26 | 12, 25 | mpan 690 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
| 27 | 26 | adantl 481 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
| 28 | 16 | eqcomd 2739 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (Scalar‘(ringLMod‘𝑅)) = 𝑅) |
| 29 | 28 | adantr 480 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Scalar‘(ringLMod‘𝑅)) = 𝑅) |
| 30 | 29 | oveq1d 7370 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) |
| 31 | 27, 30 | eqtr2d 2769 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((ringLMod‘𝑅) ↑s 𝐼)) |
| 32 | 31 | fveq2d 6835 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) |
| 33 | frlmlss.u | . . . 4 ⊢ 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) | |
| 34 | 32, 33 | eqtr4di 2786 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = 𝑈) |
| 35 | 22, 34 | eleqtrd 2835 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) ∈ 𝑈) |
| 36 | 5, 35 | eqeltrd 2833 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐵 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3438 {csn 4577 × cxp 5619 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 Scalarcsca 17174 Xscprds 17359 ↑s cpws 17360 Ringcrg 20161 LModclmod 20803 LSubSpclss 20874 ringLModcrglmod 21116 ⊕m cdsmm 21678 freeLMod cfrlm 21693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-sup 9336 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-fz 13418 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-hom 17195 df-cco 17196 df-0g 17355 df-prds 17361 df-pws 17363 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19046 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-subrg 20495 df-lmod 20805 df-lss 20875 df-sra 21117 df-rgmod 21118 df-dsmm 21679 df-frlm 21694 |
| This theorem is referenced by: frlm0 21701 frlmsubgval 21712 frlmgsum 21719 frlmsplit2 21720 |
| Copyright terms: Public domain | W3C validator |