MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmpws Structured version   Visualization version   GIF version

Theorem frlmpws 20870
Description: The free module as a restriction of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmpws.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
frlmpws ((𝑅𝑉𝐼𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))

Proof of Theorem frlmpws
StepHypRef Expression
1 eqid 2820 . . . 4 (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)})))
21dsmmval2 20856 . . 3 (𝑅m (𝐼 × {(ringLMod‘𝑅)})) = ((𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
3 rlmsca 19948 . . . . . 6 (𝑅𝑉𝑅 = (Scalar‘(ringLMod‘𝑅)))
43adantr 483 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
54oveq1d 7148 . . . 4 ((𝑅𝑉𝐼𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
6 frlmval.f . . . . . . . 8 𝐹 = (𝑅 freeLMod 𝐼)
76frlmval 20868 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
87eqcomd 2826 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝑅m (𝐼 × {(ringLMod‘𝑅)})) = 𝐹)
98fveq2d 6650 . . . . 5 ((𝑅𝑉𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘𝐹))
10 frlmpws.b . . . . 5 𝐵 = (Base‘𝐹)
119, 10syl6eqr 2873 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) = 𝐵)
125, 11oveq12d 7151 . . 3 ((𝑅𝑉𝐼𝑊) → ((𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)})))) = (((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s 𝐵))
132, 12syl5eq 2867 . 2 ((𝑅𝑉𝐼𝑊) → (𝑅m (𝐼 × {(ringLMod‘𝑅)})) = (((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s 𝐵))
14 fvex 6659 . . . . 5 (ringLMod‘𝑅) ∈ V
15 eqid 2820 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
16 eqid 2820 . . . . . 6 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
1715, 16pwsval 16738 . . . . 5 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
1814, 17mpan 688 . . . 4 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
1918adantl 484 . . 3 ((𝑅𝑉𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2019oveq1d 7148 . 2 ((𝑅𝑉𝐼𝑊) → (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s 𝐵))
2113, 7, 203eqtr4d 2865 1 ((𝑅𝑉𝐼𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3473  {csn 4543   × cxp 5529  cfv 6331  (class class class)co 7133  Basecbs 16462  s cress 16463  Scalarcsca 16547  Xscprds 16698  s cpws 16699  ringLModcrglmod 19917  m cdsmm 20851   freeLMod cfrlm 20866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-map 8386  df-ixp 8440  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-sup 8884  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-z 11961  df-dec 12078  df-uz 12223  df-fz 12877  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ple 16564  df-ds 16566  df-hom 16568  df-cco 16569  df-prds 16700  df-pws 16702  df-sra 19920  df-rgmod 19921  df-dsmm 20852  df-frlm 20867
This theorem is referenced by:  frlmsca  20873  frlm0  20874  frlmplusgval  20884  frlmsubgval  20885  frlmvscafval  20886  frlmgsum  20892  frlmsplit2  20893  frlmip  20898  rrxprds  23972
  Copyright terms: Public domain W3C validator