![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmpws | Structured version Visualization version GIF version |
Description: The free module as a restriction of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmpws.b | ⊢ 𝐵 = (Base‘𝐹) |
Ref | Expression |
---|---|
frlmpws | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . 4 ⊢ (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) | |
2 | 1 | dsmmval2 21774 | . . 3 ⊢ (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) = ((𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})))) |
3 | rlmsca 21223 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
5 | 4 | oveq1d 7446 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
6 | frlmval.f | . . . . . . . 8 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
7 | 6 | frlmval 21786 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
8 | 7 | eqcomd 2741 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) = 𝐹) |
9 | 8 | fveq2d 6911 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘𝐹)) |
10 | frlmpws.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
11 | 9, 10 | eqtr4di 2793 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) = 𝐵) |
12 | 5, 11 | oveq12d 7449 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ((𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s (Base‘(𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})))) = (((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s 𝐵)) |
13 | 2, 12 | eqtrid 2787 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) = (((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s 𝐵)) |
14 | fvex 6920 | . . . . 5 ⊢ (ringLMod‘𝑅) ∈ V | |
15 | eqid 2735 | . . . . . 6 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
16 | eqid 2735 | . . . . . 6 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
17 | 15, 16 | pwsval 17533 | . . . . 5 ⊢ (((ringLMod‘𝑅) ∈ V ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
18 | 14, 17 | mpan 690 | . . . 4 ⊢ (𝐼 ∈ 𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
19 | 18 | adantl 481 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
20 | 19 | oveq1d 7446 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s 𝐵)) |
21 | 13, 7, 20 | 3eqtr4d 2785 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 {csn 4631 × cxp 5687 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 ↾s cress 17274 Scalarcsca 17301 Xscprds 17492 ↑s cpws 17493 ringLModcrglmod 21189 ⊕m cdsmm 21769 freeLMod cfrlm 21784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-prds 17494 df-pws 17496 df-sra 21190 df-rgmod 21191 df-dsmm 21770 df-frlm 21785 |
This theorem is referenced by: frlmsca 21791 frlm0 21792 frlmplusgval 21802 frlmsubgval 21803 frlmvscafval 21804 frlmgsum 21810 frlmsplit2 21811 frlmip 21816 rrxprds 25437 |
Copyright terms: Public domain | W3C validator |