MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmpws Structured version   Visualization version   GIF version

Theorem frlmpws 20888
Description: The free module as a restriction of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmpws.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
frlmpws ((𝑅𝑉𝐼𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))

Proof of Theorem frlmpws
StepHypRef Expression
1 eqid 2821 . . . 4 (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)})))
21dsmmval2 20874 . . 3 (𝑅m (𝐼 × {(ringLMod‘𝑅)})) = ((𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
3 rlmsca 19966 . . . . . 6 (𝑅𝑉𝑅 = (Scalar‘(ringLMod‘𝑅)))
43adantr 483 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
54oveq1d 7165 . . . 4 ((𝑅𝑉𝐼𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
6 frlmval.f . . . . . . . 8 𝐹 = (𝑅 freeLMod 𝐼)
76frlmval 20886 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
87eqcomd 2827 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝑅m (𝐼 × {(ringLMod‘𝑅)})) = 𝐹)
98fveq2d 6668 . . . . 5 ((𝑅𝑉𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘𝐹))
10 frlmpws.b . . . . 5 𝐵 = (Base‘𝐹)
119, 10syl6eqr 2874 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) = 𝐵)
125, 11oveq12d 7168 . . 3 ((𝑅𝑉𝐼𝑊) → ((𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)})))) = (((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s 𝐵))
132, 12syl5eq 2868 . 2 ((𝑅𝑉𝐼𝑊) → (𝑅m (𝐼 × {(ringLMod‘𝑅)})) = (((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s 𝐵))
14 fvex 6677 . . . . 5 (ringLMod‘𝑅) ∈ V
15 eqid 2821 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
16 eqid 2821 . . . . . 6 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
1715, 16pwsval 16753 . . . . 5 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
1814, 17mpan 688 . . . 4 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
1918adantl 484 . . 3 ((𝑅𝑉𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2019oveq1d 7165 . 2 ((𝑅𝑉𝐼𝑊) → (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) ↾s 𝐵))
2113, 7, 203eqtr4d 2866 1 ((𝑅𝑉𝐼𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  {csn 4560   × cxp 5547  cfv 6349  (class class class)co 7150  Basecbs 16477  s cress 16478  Scalarcsca 16562  Xscprds 16713  s cpws 16714  ringLModcrglmod 19935  m cdsmm 20869   freeLMod cfrlm 20884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-prds 16715  df-pws 16717  df-sra 19938  df-rgmod 19939  df-dsmm 20870  df-frlm 20885
This theorem is referenced by:  frlmsca  20891  frlm0  20892  frlmplusgval  20902  frlmsubgval  20903  frlmvscafval  20904  frlmgsum  20910  frlmsplit2  20911  frlmip  20916  rrxprds  23986
  Copyright terms: Public domain W3C validator