| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmlmod | Structured version Visualization version GIF version | ||
| Description: The free module is a module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| Ref | Expression |
|---|---|
| frlmlmod | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | . . 3 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
| 2 | 1 | frlmval 21735 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
| 3 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐼 ∈ 𝑊) | |
| 4 | simpl 482 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ Ring) | |
| 5 | rlmlmod 21177 | . . . . 5 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (ringLMod‘𝑅) ∈ LMod) |
| 7 | fconst6g 6778 | . . . 4 ⊢ ((ringLMod‘𝑅) ∈ LMod → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod) |
| 9 | fvex 6900 | . . . . . . 7 ⊢ (ringLMod‘𝑅) ∈ V | |
| 10 | 9 | fvconst2 7207 | . . . . . 6 ⊢ (𝑖 ∈ 𝐼 → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅)) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅)) |
| 12 | 11 | fveq2d 6891 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = (Scalar‘(ringLMod‘𝑅))) |
| 13 | rlmsca 21172 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
| 14 | 13 | ad2antrr 726 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
| 15 | 12, 14 | eqtr4d 2772 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = 𝑅) |
| 16 | eqid 2734 | . . 3 ⊢ (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) | |
| 17 | 3, 4, 8, 15, 16 | dsmmlmod 21732 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) ∈ LMod) |
| 18 | 2, 17 | eqeltrd 2833 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4608 × cxp 5665 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 Scalarcsca 17280 Ringcrg 20203 LModclmod 20831 ringLModcrglmod 21144 ⊕m cdsmm 21718 freeLMod cfrlm 21733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-fz 13531 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-hom 17301 df-cco 17302 df-0g 17462 df-prds 17468 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 df-minusg 18929 df-sbg 18930 df-subg 19115 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-subrg 20543 df-lmod 20833 df-lss 20903 df-sra 21145 df-rgmod 21146 df-dsmm 21719 df-frlm 21734 |
| This theorem is referenced by: frlmlvec 21748 frlmplusgvalb 21756 frlmvscavalb 21757 frlmvplusgscavalb 21758 frlmphl 21768 uvcresum 21780 frlmssuvc1 21781 frlmssuvc2 21782 frlmsslsp 21783 frlmup1 21785 frlmisfrlm 21835 matlmod 22402 rrxnm 25380 rrxds 25382 lindsdom 37562 lindsenlbs 37563 matunitlindflem1 37564 matunitlindflem2 37565 frlmsnic 42495 isnumbasgrplem3 43062 mnringlmodd 44190 zlmodzxzlmod 48216 aacllem 49316 |
| Copyright terms: Public domain | W3C validator |