| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmpwsfi | Structured version Visualization version GIF version | ||
| Description: The finite free module is a power of the ring module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| Ref | Expression |
|---|---|
| frlmpwsfi | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → 𝐹 = ((ringLMod‘𝑅) ↑s 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6919 | . . . . . 6 ⊢ (ringLMod‘𝑅) ∈ V | |
| 2 | fnconstg 6796 | . . . . . 6 ⊢ ((ringLMod‘𝑅) ∈ V → (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼 |
| 4 | dsmmfi 21758 | . . . . 5 ⊢ (((𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼 ∧ 𝐼 ∈ Fin) → (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝐼 ∈ Fin → (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) |
| 7 | rlmsca 21205 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
| 9 | 8 | oveq1d 7446 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
| 10 | 6, 9 | eqtrd 2777 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
| 11 | frlmval.f | . . 3 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
| 12 | 11 | frlmval 21768 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
| 13 | eqid 2737 | . . . . 5 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
| 14 | eqid 2737 | . . . . 5 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
| 15 | 13, 14 | pwsval 17531 | . . . 4 ⊢ (((ringLMod‘𝑅) ∈ V ∧ 𝐼 ∈ Fin) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
| 16 | 1, 15 | mpan 690 | . . 3 ⊢ (𝐼 ∈ Fin → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
| 17 | 16 | adantl 481 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
| 18 | 10, 12, 17 | 3eqtr4d 2787 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → 𝐹 = ((ringLMod‘𝑅) ↑s 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 {csn 4626 × cxp 5683 Fn wfn 6556 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 Scalarcsca 17300 Xscprds 17490 ↑s cpws 17491 ringLModcrglmod 21171 ⊕m cdsmm 21751 freeLMod cfrlm 21766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-prds 17492 df-pws 17494 df-sra 21172 df-rgmod 21173 df-dsmm 21752 df-frlm 21767 |
| This theorem is referenced by: lnrfrlm 43130 |
| Copyright terms: Public domain | W3C validator |