![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmpwsfi | Structured version Visualization version GIF version |
Description: The finite free module is a power of the ring module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
Ref | Expression |
---|---|
frlmpwsfi | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → 𝐹 = ((ringLMod‘𝑅) ↑s 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6898 | . . . . . 6 ⊢ (ringLMod‘𝑅) ∈ V | |
2 | fnconstg 6773 | . . . . . 6 ⊢ ((ringLMod‘𝑅) ∈ V → (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼 |
4 | dsmmfi 21633 | . . . . 5 ⊢ (((𝐼 × {(ringLMod‘𝑅)}) Fn 𝐼 ∧ 𝐼 ∈ Fin) → (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) | |
5 | 3, 4 | mpan 687 | . . . 4 ⊢ (𝐼 ∈ Fin → (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) |
7 | rlmsca 21054 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
8 | 7 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
9 | 8 | oveq1d 7420 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
10 | 6, 9 | eqtrd 2766 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)})) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
11 | frlmval.f | . . 3 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
12 | 11 | frlmval 21643 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) |
13 | eqid 2726 | . . . . 5 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
14 | eqid 2726 | . . . . 5 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
15 | 13, 14 | pwsval 17441 | . . . 4 ⊢ (((ringLMod‘𝑅) ∈ V ∧ 𝐼 ∈ Fin) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
16 | 1, 15 | mpan 687 | . . 3 ⊢ (𝐼 ∈ Fin → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
17 | 16 | adantl 481 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)}))) |
18 | 10, 12, 17 | 3eqtr4d 2776 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → 𝐹 = ((ringLMod‘𝑅) ↑s 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 {csn 4623 × cxp 5667 Fn wfn 6532 ‘cfv 6537 (class class class)co 7405 Fincfn 8941 Scalarcsca 17209 Xscprds 17400 ↑s cpws 17401 ringLModcrglmod 21020 ⊕m cdsmm 21626 freeLMod cfrlm 21641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-hom 17230 df-cco 17231 df-0g 17396 df-prds 17402 df-pws 17404 df-sra 21021 df-rgmod 21022 df-dsmm 21627 df-frlm 21642 |
This theorem is referenced by: lnrfrlm 42438 |
Copyright terms: Public domain | W3C validator |