HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adj1 Structured version   Visualization version   GIF version

Theorem adj1 31869
Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adj1 ((𝑇 ∈ dom adj𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵))

Proof of Theorem adj1
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funadj 31822 . . . . . . 7 Fun adj
2 funfvop 7025 . . . . . . 7 ((Fun adj𝑇 ∈ dom adj) → ⟨𝑇, (adj𝑇)⟩ ∈ adj)
31, 2mpan 690 . . . . . 6 (𝑇 ∈ dom adj → ⟨𝑇, (adj𝑇)⟩ ∈ adj)
4 dfadj2 31821 . . . . . 6 adj = {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))}
53, 4eleqtrdi 2839 . . . . 5 (𝑇 ∈ dom adj → ⟨𝑇, (adj𝑇)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))})
6 fvex 6874 . . . . . 6 (adj𝑇) ∈ V
7 feq1 6669 . . . . . . . 8 (𝑧 = 𝑇 → (𝑧: ℋ⟶ ℋ ↔ 𝑇: ℋ⟶ ℋ))
8 fveq1 6860 . . . . . . . . . . 11 (𝑧 = 𝑇 → (𝑧𝑦) = (𝑇𝑦))
98oveq2d 7406 . . . . . . . . . 10 (𝑧 = 𝑇 → (𝑥 ·ih (𝑧𝑦)) = (𝑥 ·ih (𝑇𝑦)))
109eqeq1d 2732 . . . . . . . . 9 (𝑧 = 𝑇 → ((𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦)))
11102ralbidv 3202 . . . . . . . 8 (𝑧 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦)))
127, 113anbi13d 1440 . . . . . . 7 (𝑧 = 𝑇 → ((𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦))))
13 feq1 6669 . . . . . . . 8 (𝑤 = (adj𝑇) → (𝑤: ℋ⟶ ℋ ↔ (adj𝑇): ℋ⟶ ℋ))
14 fveq1 6860 . . . . . . . . . . 11 (𝑤 = (adj𝑇) → (𝑤𝑥) = ((adj𝑇)‘𝑥))
1514oveq1d 7405 . . . . . . . . . 10 (𝑤 = (adj𝑇) → ((𝑤𝑥) ·ih 𝑦) = (((adj𝑇)‘𝑥) ·ih 𝑦))
1615eqeq2d 2741 . . . . . . . . 9 (𝑤 = (adj𝑇) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦)))
17162ralbidv 3202 . . . . . . . 8 (𝑤 = (adj𝑇) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦)))
1813, 173anbi23d 1441 . . . . . . 7 (𝑤 = (adj𝑇) → ((𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))))
1912, 18opelopabg 5501 . . . . . 6 ((𝑇 ∈ dom adj ∧ (adj𝑇) ∈ V) → (⟨𝑇, (adj𝑇)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))} ↔ (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))))
206, 19mpan2 691 . . . . 5 (𝑇 ∈ dom adj → (⟨𝑇, (adj𝑇)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))} ↔ (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))))
215, 20mpbid 232 . . . 4 (𝑇 ∈ dom adj → (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦)))
2221simp3d 1144 . . 3 (𝑇 ∈ dom adj → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))
23 oveq1 7397 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·ih (𝑇𝑦)) = (𝐴 ·ih (𝑇𝑦)))
24 fveq2 6861 . . . . . 6 (𝑥 = 𝐴 → ((adj𝑇)‘𝑥) = ((adj𝑇)‘𝐴))
2524oveq1d 7405 . . . . 5 (𝑥 = 𝐴 → (((adj𝑇)‘𝑥) ·ih 𝑦) = (((adj𝑇)‘𝐴) ·ih 𝑦))
2623, 25eqeq12d 2746 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝐴) ·ih 𝑦)))
27 fveq2 6861 . . . . . 6 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
2827oveq2d 7406 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·ih (𝑇𝑦)) = (𝐴 ·ih (𝑇𝐵)))
29 oveq2 7398 . . . . 5 (𝑦 = 𝐵 → (((adj𝑇)‘𝐴) ·ih 𝑦) = (((adj𝑇)‘𝐴) ·ih 𝐵))
3028, 29eqeq12d 2746 . . . 4 (𝑦 = 𝐵 → ((𝐴 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝐴) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵)))
3126, 30rspc2v 3602 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵)))
3222, 31syl5com 31 . 2 (𝑇 ∈ dom adj → ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵)))
33323impib 1116 1 ((𝑇 ∈ dom adj𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cop 4598  {copab 5172  dom cdm 5641  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  chba 30855   ·ih csp 30858  adjcado 30891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvdistr2 30945  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his2 31019  ax-his3 31020  ax-his4 31021
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-cj 15072  df-re 15073  df-im 15074  df-hvsub 30907  df-adjh 31785
This theorem is referenced by:  adj2  31870  adjadj  31872  hmopadj2  31877
  Copyright terms: Public domain W3C validator