HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adj1 Structured version   Visualization version   GIF version

Theorem adj1 31965
Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adj1 ((𝑇 ∈ dom adj𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵))

Proof of Theorem adj1
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funadj 31918 . . . . . . 7 Fun adj
2 funfvop 7083 . . . . . . 7 ((Fun adj𝑇 ∈ dom adj) → ⟨𝑇, (adj𝑇)⟩ ∈ adj)
31, 2mpan 689 . . . . . 6 (𝑇 ∈ dom adj → ⟨𝑇, (adj𝑇)⟩ ∈ adj)
4 dfadj2 31917 . . . . . 6 adj = {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))}
53, 4eleqtrdi 2854 . . . . 5 (𝑇 ∈ dom adj → ⟨𝑇, (adj𝑇)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))})
6 fvex 6933 . . . . . 6 (adj𝑇) ∈ V
7 feq1 6728 . . . . . . . 8 (𝑧 = 𝑇 → (𝑧: ℋ⟶ ℋ ↔ 𝑇: ℋ⟶ ℋ))
8 fveq1 6919 . . . . . . . . . . 11 (𝑧 = 𝑇 → (𝑧𝑦) = (𝑇𝑦))
98oveq2d 7464 . . . . . . . . . 10 (𝑧 = 𝑇 → (𝑥 ·ih (𝑧𝑦)) = (𝑥 ·ih (𝑇𝑦)))
109eqeq1d 2742 . . . . . . . . 9 (𝑧 = 𝑇 → ((𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦)))
11102ralbidv 3227 . . . . . . . 8 (𝑧 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦)))
127, 113anbi13d 1438 . . . . . . 7 (𝑧 = 𝑇 → ((𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦))))
13 feq1 6728 . . . . . . . 8 (𝑤 = (adj𝑇) → (𝑤: ℋ⟶ ℋ ↔ (adj𝑇): ℋ⟶ ℋ))
14 fveq1 6919 . . . . . . . . . . 11 (𝑤 = (adj𝑇) → (𝑤𝑥) = ((adj𝑇)‘𝑥))
1514oveq1d 7463 . . . . . . . . . 10 (𝑤 = (adj𝑇) → ((𝑤𝑥) ·ih 𝑦) = (((adj𝑇)‘𝑥) ·ih 𝑦))
1615eqeq2d 2751 . . . . . . . . 9 (𝑤 = (adj𝑇) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦)))
17162ralbidv 3227 . . . . . . . 8 (𝑤 = (adj𝑇) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦)))
1813, 173anbi23d 1439 . . . . . . 7 (𝑤 = (adj𝑇) → ((𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))))
1912, 18opelopabg 5557 . . . . . 6 ((𝑇 ∈ dom adj ∧ (adj𝑇) ∈ V) → (⟨𝑇, (adj𝑇)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))} ↔ (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))))
206, 19mpan2 690 . . . . 5 (𝑇 ∈ dom adj → (⟨𝑇, (adj𝑇)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))} ↔ (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))))
215, 20mpbid 232 . . . 4 (𝑇 ∈ dom adj → (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦)))
2221simp3d 1144 . . 3 (𝑇 ∈ dom adj → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))
23 oveq1 7455 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·ih (𝑇𝑦)) = (𝐴 ·ih (𝑇𝑦)))
24 fveq2 6920 . . . . . 6 (𝑥 = 𝐴 → ((adj𝑇)‘𝑥) = ((adj𝑇)‘𝐴))
2524oveq1d 7463 . . . . 5 (𝑥 = 𝐴 → (((adj𝑇)‘𝑥) ·ih 𝑦) = (((adj𝑇)‘𝐴) ·ih 𝑦))
2623, 25eqeq12d 2756 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝐴) ·ih 𝑦)))
27 fveq2 6920 . . . . . 6 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
2827oveq2d 7464 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·ih (𝑇𝑦)) = (𝐴 ·ih (𝑇𝐵)))
29 oveq2 7456 . . . . 5 (𝑦 = 𝐵 → (((adj𝑇)‘𝐴) ·ih 𝑦) = (((adj𝑇)‘𝐴) ·ih 𝐵))
3028, 29eqeq12d 2756 . . . 4 (𝑦 = 𝐵 → ((𝐴 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝐴) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵)))
3126, 30rspc2v 3646 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵)))
3222, 31syl5com 31 . 2 (𝑇 ∈ dom adj → ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵)))
33323impib 1116 1 ((𝑇 ∈ dom adj𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cop 4654  {copab 5228  dom cdm 5700  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  chba 30951   ·ih csp 30954  adjcado 30987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-cj 15148  df-re 15149  df-im 15150  df-hvsub 31003  df-adjh 31881
This theorem is referenced by:  adj2  31966  adjadj  31968  hmopadj2  31973
  Copyright terms: Public domain W3C validator