HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adj1 Structured version   Visualization version   GIF version

Theorem adj1 30295
Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adj1 ((𝑇 ∈ dom adj𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵))

Proof of Theorem adj1
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funadj 30248 . . . . . . 7 Fun adj
2 funfvop 6927 . . . . . . 7 ((Fun adj𝑇 ∈ dom adj) → ⟨𝑇, (adj𝑇)⟩ ∈ adj)
31, 2mpan 687 . . . . . 6 (𝑇 ∈ dom adj → ⟨𝑇, (adj𝑇)⟩ ∈ adj)
4 dfadj2 30247 . . . . . 6 adj = {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))}
53, 4eleqtrdi 2849 . . . . 5 (𝑇 ∈ dom adj → ⟨𝑇, (adj𝑇)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))})
6 fvex 6787 . . . . . 6 (adj𝑇) ∈ V
7 feq1 6581 . . . . . . . 8 (𝑧 = 𝑇 → (𝑧: ℋ⟶ ℋ ↔ 𝑇: ℋ⟶ ℋ))
8 fveq1 6773 . . . . . . . . . . 11 (𝑧 = 𝑇 → (𝑧𝑦) = (𝑇𝑦))
98oveq2d 7291 . . . . . . . . . 10 (𝑧 = 𝑇 → (𝑥 ·ih (𝑧𝑦)) = (𝑥 ·ih (𝑇𝑦)))
109eqeq1d 2740 . . . . . . . . 9 (𝑧 = 𝑇 → ((𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦)))
11102ralbidv 3129 . . . . . . . 8 (𝑧 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦)))
127, 113anbi13d 1437 . . . . . . 7 (𝑧 = 𝑇 → ((𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦))))
13 feq1 6581 . . . . . . . 8 (𝑤 = (adj𝑇) → (𝑤: ℋ⟶ ℋ ↔ (adj𝑇): ℋ⟶ ℋ))
14 fveq1 6773 . . . . . . . . . . 11 (𝑤 = (adj𝑇) → (𝑤𝑥) = ((adj𝑇)‘𝑥))
1514oveq1d 7290 . . . . . . . . . 10 (𝑤 = (adj𝑇) → ((𝑤𝑥) ·ih 𝑦) = (((adj𝑇)‘𝑥) ·ih 𝑦))
1615eqeq2d 2749 . . . . . . . . 9 (𝑤 = (adj𝑇) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦)))
17162ralbidv 3129 . . . . . . . 8 (𝑤 = (adj𝑇) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦)))
1813, 173anbi23d 1438 . . . . . . 7 (𝑤 = (adj𝑇) → ((𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑤𝑥) ·ih 𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))))
1912, 18opelopabg 5451 . . . . . 6 ((𝑇 ∈ dom adj ∧ (adj𝑇) ∈ V) → (⟨𝑇, (adj𝑇)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))} ↔ (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))))
206, 19mpan2 688 . . . . 5 (𝑇 ∈ dom adj → (⟨𝑇, (adj𝑇)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑧𝑦)) = ((𝑤𝑥) ·ih 𝑦))} ↔ (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))))
215, 20mpbid 231 . . . 4 (𝑇 ∈ dom adj → (𝑇: ℋ⟶ ℋ ∧ (adj𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦)))
2221simp3d 1143 . . 3 (𝑇 ∈ dom adj → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))
23 oveq1 7282 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·ih (𝑇𝑦)) = (𝐴 ·ih (𝑇𝑦)))
24 fveq2 6774 . . . . . 6 (𝑥 = 𝐴 → ((adj𝑇)‘𝑥) = ((adj𝑇)‘𝐴))
2524oveq1d 7290 . . . . 5 (𝑥 = 𝐴 → (((adj𝑇)‘𝑥) ·ih 𝑦) = (((adj𝑇)‘𝐴) ·ih 𝑦))
2623, 25eqeq12d 2754 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝐴) ·ih 𝑦)))
27 fveq2 6774 . . . . . 6 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
2827oveq2d 7291 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·ih (𝑇𝑦)) = (𝐴 ·ih (𝑇𝐵)))
29 oveq2 7283 . . . . 5 (𝑦 = 𝐵 → (((adj𝑇)‘𝐴) ·ih 𝑦) = (((adj𝑇)‘𝐴) ·ih 𝐵))
3028, 29eqeq12d 2754 . . . 4 (𝑦 = 𝐵 → ((𝐴 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝐴) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵)))
3126, 30rspc2v 3570 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵)))
3222, 31syl5com 31 . 2 (𝑇 ∈ dom adj → ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵)))
33323impib 1115 1 ((𝑇 ∈ dom adj𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = (((adj𝑇)‘𝐴) ·ih 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cop 4567  {copab 5136  dom cdm 5589  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  chba 29281   ·ih csp 29284  adjcado 29317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-cj 14810  df-re 14811  df-im 14812  df-hvsub 29333  df-adjh 30211
This theorem is referenced by:  adj2  30296  adjadj  30298  hmopadj2  30303
  Copyright terms: Public domain W3C validator