| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsidvald | Structured version Visualization version GIF version | ||
| Description: Value of the structure
replacement function, deduction version.
Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 17-Oct-2024.) |
| Ref | Expression |
|---|---|
| setsidvald.e | ⊢ 𝐸 = Slot 𝑁 |
| setsidvald.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| setsidvald.f | ⊢ (𝜑 → Fun 𝑆) |
| setsidvald.d | ⊢ (𝜑 → 𝑁 ∈ dom 𝑆) |
| Ref | Expression |
|---|---|
| setsidvald | ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsidvald.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 2 | fvex 6871 | . . 3 ⊢ (𝐸‘𝑆) ∈ V | |
| 3 | setsval 17137 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐸‘𝑆) ∈ V) → (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝐸‘𝑆)〉})) | |
| 4 | 1, 2, 3 | sylancl 586 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝐸‘𝑆)〉})) |
| 5 | setsidvald.e | . . . . . 6 ⊢ 𝐸 = Slot 𝑁 | |
| 6 | 5, 1 | strfvnd 17155 | . . . . 5 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| 7 | 6 | opeq2d 4844 | . . . 4 ⊢ (𝜑 → 〈𝑁, (𝐸‘𝑆)〉 = 〈𝑁, (𝑆‘𝑁)〉) |
| 8 | 7 | sneqd 4601 | . . 3 ⊢ (𝜑 → {〈𝑁, (𝐸‘𝑆)〉} = {〈𝑁, (𝑆‘𝑁)〉}) |
| 9 | 8 | uneq2d 4131 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝐸‘𝑆)〉}) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝑆‘𝑁)〉})) |
| 10 | setsidvald.f | . . 3 ⊢ (𝜑 → Fun 𝑆) | |
| 11 | setsidvald.d | . . 3 ⊢ (𝜑 → 𝑁 ∈ dom 𝑆) | |
| 12 | funresdfunsn 7163 | . . 3 ⊢ ((Fun 𝑆 ∧ 𝑁 ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝑆‘𝑁)〉}) = 𝑆) | |
| 13 | 10, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝑆‘𝑁)〉}) = 𝑆) |
| 14 | 4, 9, 13 | 3eqtrrd 2769 | 1 ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 ∪ cun 3912 {csn 4589 〈cop 4595 dom cdm 5638 ↾ cres 5640 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 sSet csts 17133 Slot cslot 17151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-sets 17134 df-slot 17152 |
| This theorem is referenced by: ressval3d 17216 opprabs 33453 |
| Copyright terms: Public domain | W3C validator |