MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsidvald Structured version   Visualization version   GIF version

Theorem setsidvald 17128
Description: Value of the structure replacement function, deduction version.

Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 17-Oct-2024.)

Hypotheses
Ref Expression
setsidvald.e 𝐸 = Slot 𝑁
setsidvald.s (𝜑𝑆𝑉)
setsidvald.f (𝜑 → Fun 𝑆)
setsidvald.d (𝜑𝑁 ∈ dom 𝑆)
Assertion
Ref Expression
setsidvald (𝜑𝑆 = (𝑆 sSet ⟨𝑁, (𝐸𝑆)⟩))

Proof of Theorem setsidvald
StepHypRef Expression
1 setsidvald.s . . 3 (𝜑𝑆𝑉)
2 fvex 6839 . . 3 (𝐸𝑆) ∈ V
3 setsval 17096 . . 3 ((𝑆𝑉 ∧ (𝐸𝑆) ∈ V) → (𝑆 sSet ⟨𝑁, (𝐸𝑆)⟩) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝐸𝑆)⟩}))
41, 2, 3sylancl 586 . 2 (𝜑 → (𝑆 sSet ⟨𝑁, (𝐸𝑆)⟩) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝐸𝑆)⟩}))
5 setsidvald.e . . . . . 6 𝐸 = Slot 𝑁
65, 1strfvnd 17114 . . . . 5 (𝜑 → (𝐸𝑆) = (𝑆𝑁))
76opeq2d 4834 . . . 4 (𝜑 → ⟨𝑁, (𝐸𝑆)⟩ = ⟨𝑁, (𝑆𝑁)⟩)
87sneqd 4591 . . 3 (𝜑 → {⟨𝑁, (𝐸𝑆)⟩} = {⟨𝑁, (𝑆𝑁)⟩})
98uneq2d 4121 . 2 (𝜑 → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝐸𝑆)⟩}) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝑆𝑁)⟩}))
10 setsidvald.f . . 3 (𝜑 → Fun 𝑆)
11 setsidvald.d . . 3 (𝜑𝑁 ∈ dom 𝑆)
12 funresdfunsn 7129 . . 3 ((Fun 𝑆𝑁 ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝑆𝑁)⟩}) = 𝑆)
1310, 11, 12syl2anc 584 . 2 (𝜑 → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝑆𝑁)⟩}) = 𝑆)
144, 9, 133eqtrrd 2769 1 (𝜑𝑆 = (𝑆 sSet ⟨𝑁, (𝐸𝑆)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  cdif 3902  cun 3903  {csn 4579  cop 4585  dom cdm 5623  cres 5625  Fun wfun 6480  cfv 6486  (class class class)co 7353   sSet csts 17092  Slot cslot 17110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-sets 17093  df-slot 17111
This theorem is referenced by:  ressval3d  17175  opprabs  33429
  Copyright terms: Public domain W3C validator