![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsidvald | Structured version Visualization version GIF version |
Description: Value of the structure
replacement function, deduction version.
Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 17-Oct-2024.) |
Ref | Expression |
---|---|
setsidvald.e | ⊢ 𝐸 = Slot 𝑁 |
setsidvald.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
setsidvald.f | ⊢ (𝜑 → Fun 𝑆) |
setsidvald.d | ⊢ (𝜑 → 𝑁 ∈ dom 𝑆) |
Ref | Expression |
---|---|
setsidvald | ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsidvald.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | fvex 6933 | . . 3 ⊢ (𝐸‘𝑆) ∈ V | |
3 | setsval 17214 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐸‘𝑆) ∈ V) → (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝐸‘𝑆)〉})) | |
4 | 1, 2, 3 | sylancl 585 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝐸‘𝑆)〉})) |
5 | setsidvald.e | . . . . . 6 ⊢ 𝐸 = Slot 𝑁 | |
6 | 5, 1 | strfvnd 17232 | . . . . 5 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
7 | 6 | opeq2d 4904 | . . . 4 ⊢ (𝜑 → 〈𝑁, (𝐸‘𝑆)〉 = 〈𝑁, (𝑆‘𝑁)〉) |
8 | 7 | sneqd 4660 | . . 3 ⊢ (𝜑 → {〈𝑁, (𝐸‘𝑆)〉} = {〈𝑁, (𝑆‘𝑁)〉}) |
9 | 8 | uneq2d 4191 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝐸‘𝑆)〉}) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝑆‘𝑁)〉})) |
10 | setsidvald.f | . . 3 ⊢ (𝜑 → Fun 𝑆) | |
11 | setsidvald.d | . . 3 ⊢ (𝜑 → 𝑁 ∈ dom 𝑆) | |
12 | funresdfunsn 7223 | . . 3 ⊢ ((Fun 𝑆 ∧ 𝑁 ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝑆‘𝑁)〉}) = 𝑆) | |
13 | 10, 11, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝑆‘𝑁)〉}) = 𝑆) |
14 | 4, 9, 13 | 3eqtrrd 2785 | 1 ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 {csn 4648 〈cop 4654 dom cdm 5700 ↾ cres 5702 Fun wfun 6567 ‘cfv 6573 (class class class)co 7448 sSet csts 17210 Slot cslot 17228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-sets 17211 df-slot 17229 |
This theorem is referenced by: ressval3d 17305 opprabs 33475 |
Copyright terms: Public domain | W3C validator |