MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsidvald Structured version   Visualization version   GIF version

Theorem setsidvald 17169
Description: Value of the structure replacement function, deduction version.

Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 17-Oct-2024.)

Hypotheses
Ref Expression
setsidvald.e 𝐸 = Slot 𝑁
setsidvald.s (𝜑𝑆𝑉)
setsidvald.f (𝜑 → Fun 𝑆)
setsidvald.d (𝜑𝑁 ∈ dom 𝑆)
Assertion
Ref Expression
setsidvald (𝜑𝑆 = (𝑆 sSet ⟨𝑁, (𝐸𝑆)⟩))

Proof of Theorem setsidvald
StepHypRef Expression
1 setsidvald.s . . 3 (𝜑𝑆𝑉)
2 fvex 6871 . . 3 (𝐸𝑆) ∈ V
3 setsval 17137 . . 3 ((𝑆𝑉 ∧ (𝐸𝑆) ∈ V) → (𝑆 sSet ⟨𝑁, (𝐸𝑆)⟩) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝐸𝑆)⟩}))
41, 2, 3sylancl 586 . 2 (𝜑 → (𝑆 sSet ⟨𝑁, (𝐸𝑆)⟩) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝐸𝑆)⟩}))
5 setsidvald.e . . . . . 6 𝐸 = Slot 𝑁
65, 1strfvnd 17155 . . . . 5 (𝜑 → (𝐸𝑆) = (𝑆𝑁))
76opeq2d 4844 . . . 4 (𝜑 → ⟨𝑁, (𝐸𝑆)⟩ = ⟨𝑁, (𝑆𝑁)⟩)
87sneqd 4601 . . 3 (𝜑 → {⟨𝑁, (𝐸𝑆)⟩} = {⟨𝑁, (𝑆𝑁)⟩})
98uneq2d 4131 . 2 (𝜑 → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝐸𝑆)⟩}) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝑆𝑁)⟩}))
10 setsidvald.f . . 3 (𝜑 → Fun 𝑆)
11 setsidvald.d . . 3 (𝜑𝑁 ∈ dom 𝑆)
12 funresdfunsn 7163 . . 3 ((Fun 𝑆𝑁 ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝑆𝑁)⟩}) = 𝑆)
1310, 11, 12syl2anc 584 . 2 (𝜑 → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝑆𝑁)⟩}) = 𝑆)
144, 9, 133eqtrrd 2769 1 (𝜑𝑆 = (𝑆 sSet ⟨𝑁, (𝐸𝑆)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  cun 3912  {csn 4589  cop 4595  dom cdm 5638  cres 5640  Fun wfun 6505  cfv 6511  (class class class)co 7387   sSet csts 17133  Slot cslot 17151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-sets 17134  df-slot 17152
This theorem is referenced by:  ressval3d  17216  opprabs  33453
  Copyright terms: Public domain W3C validator