![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsidvald | Structured version Visualization version GIF version |
Description: Value of the structure replacement function, deduction version. (Contributed by AV, 14-Mar-2020.) |
Ref | Expression |
---|---|
setsidvald.e | ⊢ 𝐸 = Slot 𝑁 |
setsidvald.n | ⊢ 𝑁 ∈ ℕ |
setsidvald.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
setsidvald.f | ⊢ (𝜑 → Fun 𝑆) |
setsidvald.d | ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) |
Ref | Expression |
---|---|
setsidvald | ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsidvald.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | fvex 6422 | . . 3 ⊢ (𝐸‘𝑆) ∈ V | |
3 | setsval 16210 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐸‘𝑆) ∈ V) → (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉})) | |
4 | 1, 2, 3 | sylancl 581 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉})) |
5 | setsidvald.e | . . . . . . 7 ⊢ 𝐸 = Slot 𝑁 | |
6 | setsidvald.n | . . . . . . 7 ⊢ 𝑁 ∈ ℕ | |
7 | 5, 6 | ndxid 16206 | . . . . . 6 ⊢ 𝐸 = Slot (𝐸‘ndx) |
8 | 7, 1 | strfvnd 16199 | . . . . 5 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
9 | 8 | opeq2d 4598 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), (𝐸‘𝑆)〉 = 〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉) |
10 | 9 | sneqd 4378 | . . 3 ⊢ (𝜑 → {〈(𝐸‘ndx), (𝐸‘𝑆)〉} = {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) |
11 | 10 | uneq2d 3963 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉}) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉})) |
12 | setsidvald.f | . . 3 ⊢ (𝜑 → Fun 𝑆) | |
13 | setsidvald.d | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) | |
14 | funresdfunsn 6682 | . . 3 ⊢ ((Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) = 𝑆) | |
15 | 12, 13, 14 | syl2anc 580 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) = 𝑆) |
16 | 4, 11, 15 | 3eqtrrd 2836 | 1 ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 Vcvv 3383 ∖ cdif 3764 ∪ cun 3765 {csn 4366 〈cop 4372 dom cdm 5310 ↾ cres 5312 Fun wfun 6093 ‘cfv 6099 (class class class)co 6876 ℕcn 11310 ndxcnx 16177 sSet csts 16178 Slot cslot 16179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-1cn 10280 ax-addcl 10282 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-nn 11311 df-ndx 16183 df-slot 16184 df-sets 16187 |
This theorem is referenced by: ressval3d 16258 ressval3dOLD 16259 |
Copyright terms: Public domain | W3C validator |