| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setsidvald | Structured version Visualization version GIF version | ||
| Description: Value of the structure
replacement function, deduction version.
Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 17-Oct-2024.) |
| Ref | Expression |
|---|---|
| setsidvald.e | ⊢ 𝐸 = Slot 𝑁 |
| setsidvald.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| setsidvald.f | ⊢ (𝜑 → Fun 𝑆) |
| setsidvald.d | ⊢ (𝜑 → 𝑁 ∈ dom 𝑆) |
| Ref | Expression |
|---|---|
| setsidvald | ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsidvald.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 2 | fvex 6835 | . . 3 ⊢ (𝐸‘𝑆) ∈ V | |
| 3 | setsval 17075 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐸‘𝑆) ∈ V) → (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝐸‘𝑆)〉})) | |
| 4 | 1, 2, 3 | sylancl 586 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝐸‘𝑆)〉})) |
| 5 | setsidvald.e | . . . . . 6 ⊢ 𝐸 = Slot 𝑁 | |
| 6 | 5, 1 | strfvnd 17093 | . . . . 5 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| 7 | 6 | opeq2d 4832 | . . . 4 ⊢ (𝜑 → 〈𝑁, (𝐸‘𝑆)〉 = 〈𝑁, (𝑆‘𝑁)〉) |
| 8 | 7 | sneqd 4588 | . . 3 ⊢ (𝜑 → {〈𝑁, (𝐸‘𝑆)〉} = {〈𝑁, (𝑆‘𝑁)〉}) |
| 9 | 8 | uneq2d 4118 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝐸‘𝑆)〉}) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝑆‘𝑁)〉})) |
| 10 | setsidvald.f | . . 3 ⊢ (𝜑 → Fun 𝑆) | |
| 11 | setsidvald.d | . . 3 ⊢ (𝜑 → 𝑁 ∈ dom 𝑆) | |
| 12 | funresdfunsn 7123 | . . 3 ⊢ ((Fun 𝑆 ∧ 𝑁 ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝑆‘𝑁)〉}) = 𝑆) | |
| 13 | 10, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝑆‘𝑁)〉}) = 𝑆) |
| 14 | 4, 9, 13 | 3eqtrrd 2771 | 1 ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3899 ∪ cun 3900 {csn 4576 〈cop 4582 dom cdm 5616 ↾ cres 5618 Fun wfun 6475 ‘cfv 6481 (class class class)co 7346 sSet csts 17071 Slot cslot 17089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-sets 17072 df-slot 17090 |
| This theorem is referenced by: ressval3d 17154 opprabs 33442 |
| Copyright terms: Public domain | W3C validator |