MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsidvald Structured version   Visualization version   GIF version

Theorem setsidvald 17132
Description: Value of the structure replacement function, deduction version.

Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (πΈβ€˜ndx) can be used instead of 𝑁. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 17-Oct-2024.)

Hypotheses
Ref Expression
setsidvald.e 𝐸 = Slot 𝑁
setsidvald.s (πœ‘ β†’ 𝑆 ∈ 𝑉)
setsidvald.f (πœ‘ β†’ Fun 𝑆)
setsidvald.d (πœ‘ β†’ 𝑁 ∈ dom 𝑆)
Assertion
Ref Expression
setsidvald (πœ‘ β†’ 𝑆 = (𝑆 sSet βŸ¨π‘, (πΈβ€˜π‘†)⟩))

Proof of Theorem setsidvald
StepHypRef Expression
1 setsidvald.s . . 3 (πœ‘ β†’ 𝑆 ∈ 𝑉)
2 fvex 6905 . . 3 (πΈβ€˜π‘†) ∈ V
3 setsval 17100 . . 3 ((𝑆 ∈ 𝑉 ∧ (πΈβ€˜π‘†) ∈ V) β†’ (𝑆 sSet βŸ¨π‘, (πΈβ€˜π‘†)⟩) = ((𝑆 β†Ύ (V βˆ– {𝑁})) βˆͺ {βŸ¨π‘, (πΈβ€˜π‘†)⟩}))
41, 2, 3sylancl 587 . 2 (πœ‘ β†’ (𝑆 sSet βŸ¨π‘, (πΈβ€˜π‘†)⟩) = ((𝑆 β†Ύ (V βˆ– {𝑁})) βˆͺ {βŸ¨π‘, (πΈβ€˜π‘†)⟩}))
5 setsidvald.e . . . . . 6 𝐸 = Slot 𝑁
65, 1strfvnd 17118 . . . . 5 (πœ‘ β†’ (πΈβ€˜π‘†) = (π‘†β€˜π‘))
76opeq2d 4881 . . . 4 (πœ‘ β†’ βŸ¨π‘, (πΈβ€˜π‘†)⟩ = βŸ¨π‘, (π‘†β€˜π‘)⟩)
87sneqd 4641 . . 3 (πœ‘ β†’ {βŸ¨π‘, (πΈβ€˜π‘†)⟩} = {βŸ¨π‘, (π‘†β€˜π‘)⟩})
98uneq2d 4164 . 2 (πœ‘ β†’ ((𝑆 β†Ύ (V βˆ– {𝑁})) βˆͺ {βŸ¨π‘, (πΈβ€˜π‘†)⟩}) = ((𝑆 β†Ύ (V βˆ– {𝑁})) βˆͺ {βŸ¨π‘, (π‘†β€˜π‘)⟩}))
10 setsidvald.f . . 3 (πœ‘ β†’ Fun 𝑆)
11 setsidvald.d . . 3 (πœ‘ β†’ 𝑁 ∈ dom 𝑆)
12 funresdfunsn 7187 . . 3 ((Fun 𝑆 ∧ 𝑁 ∈ dom 𝑆) β†’ ((𝑆 β†Ύ (V βˆ– {𝑁})) βˆͺ {βŸ¨π‘, (π‘†β€˜π‘)⟩}) = 𝑆)
1310, 11, 12syl2anc 585 . 2 (πœ‘ β†’ ((𝑆 β†Ύ (V βˆ– {𝑁})) βˆͺ {βŸ¨π‘, (π‘†β€˜π‘)⟩}) = 𝑆)
144, 9, 133eqtrrd 2778 1 (πœ‘ β†’ 𝑆 = (𝑆 sSet βŸ¨π‘, (πΈβ€˜π‘†)⟩))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  Vcvv 3475   βˆ– cdif 3946   βˆͺ cun 3947  {csn 4629  βŸ¨cop 4635  dom cdm 5677   β†Ύ cres 5679  Fun wfun 6538  β€˜cfv 6544  (class class class)co 7409   sSet csts 17096  Slot cslot 17114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-sets 17097  df-slot 17115
This theorem is referenced by:  ressval3d  17191  opprabs  32596
  Copyright terms: Public domain W3C validator