Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > setsidvald | Structured version Visualization version GIF version |
Description: Value of the structure
replacement function, deduction version.
Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 17-Oct-2024.) |
Ref | Expression |
---|---|
setsidvald.e | ⊢ 𝐸 = Slot 𝑁 |
setsidvald.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
setsidvald.f | ⊢ (𝜑 → Fun 𝑆) |
setsidvald.d | ⊢ (𝜑 → 𝑁 ∈ dom 𝑆) |
Ref | Expression |
---|---|
setsidvald | ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsidvald.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | fvex 6769 | . . 3 ⊢ (𝐸‘𝑆) ∈ V | |
3 | setsval 16796 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐸‘𝑆) ∈ V) → (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝐸‘𝑆)〉})) | |
4 | 1, 2, 3 | sylancl 585 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝐸‘𝑆)〉})) |
5 | setsidvald.e | . . . . . 6 ⊢ 𝐸 = Slot 𝑁 | |
6 | 5, 1 | strfvnd 16814 | . . . . 5 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
7 | 6 | opeq2d 4808 | . . . 4 ⊢ (𝜑 → 〈𝑁, (𝐸‘𝑆)〉 = 〈𝑁, (𝑆‘𝑁)〉) |
8 | 7 | sneqd 4570 | . . 3 ⊢ (𝜑 → {〈𝑁, (𝐸‘𝑆)〉} = {〈𝑁, (𝑆‘𝑁)〉}) |
9 | 8 | uneq2d 4093 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝐸‘𝑆)〉}) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝑆‘𝑁)〉})) |
10 | setsidvald.f | . . 3 ⊢ (𝜑 → Fun 𝑆) | |
11 | setsidvald.d | . . 3 ⊢ (𝜑 → 𝑁 ∈ dom 𝑆) | |
12 | funresdfunsn 7043 | . . 3 ⊢ ((Fun 𝑆 ∧ 𝑁 ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝑆‘𝑁)〉}) = 𝑆) | |
13 | 10, 11, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {〈𝑁, (𝑆‘𝑁)〉}) = 𝑆) |
14 | 4, 9, 13 | 3eqtrrd 2783 | 1 ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈𝑁, (𝐸‘𝑆)〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 {csn 4558 〈cop 4564 dom cdm 5580 ↾ cres 5582 Fun wfun 6412 ‘cfv 6418 (class class class)co 7255 sSet csts 16792 Slot cslot 16810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-sets 16793 df-slot 16811 |
This theorem is referenced by: ressval3d 16882 |
Copyright terms: Public domain | W3C validator |