MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsidvald Structured version   Visualization version   GIF version

Theorem setsidvald 17107
Description: Value of the structure replacement function, deduction version.

Hint: Do not substitute 𝑁 by a specific (positive) integer to be independent of a hard-coded index value. Often, (𝐸‘ndx) can be used instead of 𝑁. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 17-Oct-2024.)

Hypotheses
Ref Expression
setsidvald.e 𝐸 = Slot 𝑁
setsidvald.s (𝜑𝑆𝑉)
setsidvald.f (𝜑 → Fun 𝑆)
setsidvald.d (𝜑𝑁 ∈ dom 𝑆)
Assertion
Ref Expression
setsidvald (𝜑𝑆 = (𝑆 sSet ⟨𝑁, (𝐸𝑆)⟩))

Proof of Theorem setsidvald
StepHypRef Expression
1 setsidvald.s . . 3 (𝜑𝑆𝑉)
2 fvex 6835 . . 3 (𝐸𝑆) ∈ V
3 setsval 17075 . . 3 ((𝑆𝑉 ∧ (𝐸𝑆) ∈ V) → (𝑆 sSet ⟨𝑁, (𝐸𝑆)⟩) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝐸𝑆)⟩}))
41, 2, 3sylancl 586 . 2 (𝜑 → (𝑆 sSet ⟨𝑁, (𝐸𝑆)⟩) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝐸𝑆)⟩}))
5 setsidvald.e . . . . . 6 𝐸 = Slot 𝑁
65, 1strfvnd 17093 . . . . 5 (𝜑 → (𝐸𝑆) = (𝑆𝑁))
76opeq2d 4832 . . . 4 (𝜑 → ⟨𝑁, (𝐸𝑆)⟩ = ⟨𝑁, (𝑆𝑁)⟩)
87sneqd 4588 . . 3 (𝜑 → {⟨𝑁, (𝐸𝑆)⟩} = {⟨𝑁, (𝑆𝑁)⟩})
98uneq2d 4118 . 2 (𝜑 → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝐸𝑆)⟩}) = ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝑆𝑁)⟩}))
10 setsidvald.f . . 3 (𝜑 → Fun 𝑆)
11 setsidvald.d . . 3 (𝜑𝑁 ∈ dom 𝑆)
12 funresdfunsn 7123 . . 3 ((Fun 𝑆𝑁 ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝑆𝑁)⟩}) = 𝑆)
1310, 11, 12syl2anc 584 . 2 (𝜑 → ((𝑆 ↾ (V ∖ {𝑁})) ∪ {⟨𝑁, (𝑆𝑁)⟩}) = 𝑆)
144, 9, 133eqtrrd 2771 1 (𝜑𝑆 = (𝑆 sSet ⟨𝑁, (𝐸𝑆)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3899  cun 3900  {csn 4576  cop 4582  dom cdm 5616  cres 5618  Fun wfun 6475  cfv 6481  (class class class)co 7346   sSet csts 17071  Slot cslot 17089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-sets 17072  df-slot 17090
This theorem is referenced by:  ressval3d  17154  opprabs  33442
  Copyright terms: Public domain W3C validator