Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symgextres | Structured version Visualization version GIF version |
Description: The restriction of the extension of a permutation, fixing the additional element, to the original domain. (Contributed by AV, 6-Jan-2019.) |
Ref | Expression |
---|---|
symgext.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
symgext.e | ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
Ref | Expression |
---|---|
symgextres | ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸 ↾ (𝑁 ∖ {𝐾})) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgext.s | . . . 4 ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) | |
2 | symgext.e | . . . 4 ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) | |
3 | 1, 2 | symgextfv 19054 | . . 3 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑖 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑖) = (𝑍‘𝑖))) |
4 | 3 | ralrimiv 3136 | . 2 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝐸‘𝑖) = (𝑍‘𝑖)) |
5 | 1, 2 | symgextf 19053 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁⟶𝑁) |
6 | 5 | ffnd 6619 | . . 3 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸 Fn 𝑁) |
7 | eqid 2733 | . . . . . 6 ⊢ (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾})) | |
8 | 7, 1 | symgbasf 19011 | . . . . 5 ⊢ (𝑍 ∈ 𝑆 → 𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾})) |
9 | 8 | ffnd 6619 | . . . 4 ⊢ (𝑍 ∈ 𝑆 → 𝑍 Fn (𝑁 ∖ {𝐾})) |
10 | 9 | adantl 481 | . . 3 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝑍 Fn (𝑁 ∖ {𝐾})) |
11 | difssd 4070 | . . 3 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑁 ∖ {𝐾}) ⊆ 𝑁) | |
12 | fvreseq1 6936 | . . 3 ⊢ (((𝐸 Fn 𝑁 ∧ 𝑍 Fn (𝑁 ∖ {𝐾})) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → ((𝐸 ↾ (𝑁 ∖ {𝐾})) = 𝑍 ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝐸‘𝑖) = (𝑍‘𝑖))) | |
13 | 6, 10, 11, 12 | syl21anc 834 | . 2 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸 ↾ (𝑁 ∖ {𝐾})) = 𝑍 ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝐸‘𝑖) = (𝑍‘𝑖))) |
14 | 4, 13 | mpbird 256 | 1 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸 ↾ (𝑁 ∖ {𝐾})) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ∀wral 3059 ∖ cdif 3886 ⊆ wss 3889 ifcif 4462 {csn 4564 ↦ cmpt 5160 ↾ cres 5593 Fn wfn 6442 ‘cfv 6447 Basecbs 16940 SymGrpcsymg 19002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-uz 12611 df-fz 13268 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-tset 17009 df-efmnd 18536 df-symg 19003 |
This theorem is referenced by: symgfixfo 19075 |
Copyright terms: Public domain | W3C validator |