| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgextres | Structured version Visualization version GIF version | ||
| Description: The restriction of the extension of a permutation, fixing the additional element, to the original domain. (Contributed by AV, 6-Jan-2019.) |
| Ref | Expression |
|---|---|
| symgext.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
| symgext.e | ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
| Ref | Expression |
|---|---|
| symgextres | ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸 ↾ (𝑁 ∖ {𝐾})) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgext.s | . . . 4 ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) | |
| 2 | symgext.e | . . . 4 ⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) | |
| 3 | 1, 2 | symgextfv 19348 | . . 3 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑖 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑖) = (𝑍‘𝑖))) |
| 4 | 3 | ralrimiv 3124 | . 2 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝐸‘𝑖) = (𝑍‘𝑖)) |
| 5 | 1, 2 | symgextf 19347 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁⟶𝑁) |
| 6 | 5 | ffnd 6689 | . . 3 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸 Fn 𝑁) |
| 7 | eqid 2729 | . . . . . 6 ⊢ (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾})) | |
| 8 | 7, 1 | symgbasf 19306 | . . . . 5 ⊢ (𝑍 ∈ 𝑆 → 𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾})) |
| 9 | 8 | ffnd 6689 | . . . 4 ⊢ (𝑍 ∈ 𝑆 → 𝑍 Fn (𝑁 ∖ {𝐾})) |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝑍 Fn (𝑁 ∖ {𝐾})) |
| 11 | difssd 4100 | . . 3 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑁 ∖ {𝐾}) ⊆ 𝑁) | |
| 12 | fvreseq1 7011 | . . 3 ⊢ (((𝐸 Fn 𝑁 ∧ 𝑍 Fn (𝑁 ∖ {𝐾})) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → ((𝐸 ↾ (𝑁 ∖ {𝐾})) = 𝑍 ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝐸‘𝑖) = (𝑍‘𝑖))) | |
| 13 | 6, 10, 11, 12 | syl21anc 837 | . 2 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ((𝐸 ↾ (𝑁 ∖ {𝐾})) = 𝑍 ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝐸‘𝑖) = (𝑍‘𝑖))) |
| 14 | 4, 13 | mpbird 257 | 1 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝐸 ↾ (𝑁 ∖ {𝐾})) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3911 ⊆ wss 3914 ifcif 4488 {csn 4589 ↦ cmpt 5188 ↾ cres 5640 Fn wfn 6506 ‘cfv 6511 Basecbs 17179 SymGrpcsymg 19299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-tset 17239 df-efmnd 18796 df-symg 19300 |
| This theorem is referenced by: symgfixfo 19369 |
| Copyright terms: Public domain | W3C validator |