MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextres Structured version   Visualization version   GIF version

Theorem symgextres 19292
Description: The restriction of the extension of a permutation, fixing the additional element, to the original domain. (Contributed by AV, 6-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextres ((𝐾𝑁𝑍𝑆) → (𝐸 ↾ (𝑁 ∖ {𝐾})) = 𝑍)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextres
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 symgext.s . . . 4 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
2 symgext.e . . . 4 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
31, 2symgextfv 19285 . . 3 ((𝐾𝑁𝑍𝑆) → (𝑖 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑖) = (𝑍𝑖)))
43ralrimiv 3145 . 2 ((𝐾𝑁𝑍𝑆) → ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝐸𝑖) = (𝑍𝑖))
51, 2symgextf 19284 . . . 4 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
65ffnd 6718 . . 3 ((𝐾𝑁𝑍𝑆) → 𝐸 Fn 𝑁)
7 eqid 2732 . . . . . 6 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
87, 1symgbasf 19242 . . . . 5 (𝑍𝑆𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}))
98ffnd 6718 . . . 4 (𝑍𝑆𝑍 Fn (𝑁 ∖ {𝐾}))
109adantl 482 . . 3 ((𝐾𝑁𝑍𝑆) → 𝑍 Fn (𝑁 ∖ {𝐾}))
11 difssd 4132 . . 3 ((𝐾𝑁𝑍𝑆) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
12 fvreseq1 7040 . . 3 (((𝐸 Fn 𝑁𝑍 Fn (𝑁 ∖ {𝐾})) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → ((𝐸 ↾ (𝑁 ∖ {𝐾})) = 𝑍 ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝐸𝑖) = (𝑍𝑖)))
136, 10, 11, 12syl21anc 836 . 2 ((𝐾𝑁𝑍𝑆) → ((𝐸 ↾ (𝑁 ∖ {𝐾})) = 𝑍 ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝐸𝑖) = (𝑍𝑖)))
144, 13mpbird 256 1 ((𝐾𝑁𝑍𝑆) → (𝐸 ↾ (𝑁 ∖ {𝐾})) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  cdif 3945  wss 3948  ifcif 4528  {csn 4628  cmpt 5231  cres 5678   Fn wfn 6538  cfv 6543  Basecbs 17143  SymGrpcsymg 19233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-tset 17215  df-efmnd 18749  df-symg 19234
This theorem is referenced by:  symgfixfo  19306
  Copyright terms: Public domain W3C validator