| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressply1evl | Structured version Visualization version GIF version | ||
| Description: Evaluation of a univariate subring polynomial is the same as the evaluation in the bigger ring. (Contributed by Thierry Arnoux, 23-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressply1evl2.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| ressply1evl2.k | ⊢ 𝐾 = (Base‘𝑆) |
| ressply1evl2.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| ressply1evl2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| ressply1evl2.b | ⊢ 𝐵 = (Base‘𝑊) |
| ressply1evl.e | ⊢ 𝐸 = (eval1‘𝑆) |
| ressply1evl.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| ressply1evl.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| Ref | Expression |
|---|---|
| ressply1evl | ⊢ (𝜑 → 𝑄 = (𝐸 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply1evl.e | . . . . . . 7 ⊢ 𝐸 = (eval1‘𝑆) | |
| 2 | ressply1evl2.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑆) | |
| 3 | 1, 2 | evl1fval1 22225 | . . . . . 6 ⊢ 𝐸 = (𝑆 evalSub1 𝐾) |
| 4 | eqid 2730 | . . . . . 6 ⊢ (Poly1‘(𝑆 ↾s 𝐾)) = (Poly1‘(𝑆 ↾s 𝐾)) | |
| 5 | eqid 2730 | . . . . . 6 ⊢ (𝑆 ↾s 𝐾) = (𝑆 ↾s 𝐾) | |
| 6 | eqid 2730 | . . . . . 6 ⊢ (Base‘(Poly1‘(𝑆 ↾s 𝐾))) = (Base‘(Poly1‘(𝑆 ↾s 𝐾))) | |
| 7 | ressply1evl.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑆 ∈ CRing) |
| 9 | 7 | crngringd 20162 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 10 | 2 | subrgid 20489 | . . . . . . . 8 ⊢ (𝑆 ∈ Ring → 𝐾 ∈ (SubRing‘𝑆)) |
| 11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘𝑆)) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝐾 ∈ (SubRing‘𝑆)) |
| 13 | eqid 2730 | . . . . . . . . . 10 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
| 14 | ressply1evl2.u | . . . . . . . . . 10 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 15 | ressply1evl2.w | . . . . . . . . . 10 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 16 | ressply1evl2.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑊) | |
| 17 | ressply1evl.r | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 18 | eqid 2730 | . . . . . . . . . 10 ⊢ (PwSer1‘𝑈) = (PwSer1‘𝑈) | |
| 19 | eqid 2730 | . . . . . . . . . 10 ⊢ (Base‘(PwSer1‘𝑈)) = (Base‘(PwSer1‘𝑈)) | |
| 20 | eqid 2730 | . . . . . . . . . 10 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
| 21 | 13, 14, 15, 16, 17, 18, 19, 20 | ressply1bas2 22119 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆)))) |
| 22 | inss2 4204 | . . . . . . . . 9 ⊢ ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆))) ⊆ (Base‘(Poly1‘𝑆)) | |
| 23 | 21, 22 | eqsstrdi 3994 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘𝑆))) |
| 24 | 2 | ressid 17221 | . . . . . . . . . . 11 ⊢ (𝑆 ∈ CRing → (𝑆 ↾s 𝐾) = 𝑆) |
| 25 | 7, 24 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑆 ↾s 𝐾) = 𝑆) |
| 26 | 25 | fveq2d 6865 | . . . . . . . . 9 ⊢ (𝜑 → (Poly1‘(𝑆 ↾s 𝐾)) = (Poly1‘𝑆)) |
| 27 | 26 | fveq2d 6865 | . . . . . . . 8 ⊢ (𝜑 → (Base‘(Poly1‘(𝑆 ↾s 𝐾))) = (Base‘(Poly1‘𝑆))) |
| 28 | 23, 27 | sseqtrrd 3987 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘(𝑆 ↾s 𝐾)))) |
| 29 | 28 | sselda 3949 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑚 ∈ (Base‘(Poly1‘(𝑆 ↾s 𝐾)))) |
| 30 | eqid 2730 | . . . . . 6 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 31 | eqid 2730 | . . . . . 6 ⊢ (.g‘(mulGrp‘𝑆)) = (.g‘(mulGrp‘𝑆)) | |
| 32 | eqid 2730 | . . . . . 6 ⊢ (coe1‘𝑚) = (coe1‘𝑚) | |
| 33 | 3, 2, 4, 5, 6, 8, 12, 29, 30, 31, 32 | evls1fpws 22263 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → (𝐸‘𝑚) = (𝑥 ∈ 𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ (((coe1‘𝑚)‘𝑘)(.r‘𝑆)(𝑘(.g‘(mulGrp‘𝑆))𝑥)))))) |
| 34 | ressply1evl2.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 35 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑅 ∈ (SubRing‘𝑆)) |
| 36 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑚 ∈ 𝐵) | |
| 37 | 34, 2, 15, 14, 16, 8, 35, 36, 30, 31, 32 | evls1fpws 22263 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → (𝑄‘𝑚) = (𝑥 ∈ 𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ (((coe1‘𝑚)‘𝑘)(.r‘𝑆)(𝑘(.g‘(mulGrp‘𝑆))𝑥)))))) |
| 38 | 33, 37 | eqtr4d 2768 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → (𝐸‘𝑚) = (𝑄‘𝑚)) |
| 39 | 38 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ 𝐵 (𝐸‘𝑚) = (𝑄‘𝑚)) |
| 40 | eqid 2730 | . . . . . . 7 ⊢ (𝑆 ↑s 𝐾) = (𝑆 ↑s 𝐾) | |
| 41 | 1, 13, 40, 2 | evl1rhm 22226 | . . . . . 6 ⊢ (𝑆 ∈ CRing → 𝐸 ∈ ((Poly1‘𝑆) RingHom (𝑆 ↑s 𝐾))) |
| 42 | eqid 2730 | . . . . . . 7 ⊢ (Base‘(𝑆 ↑s 𝐾)) = (Base‘(𝑆 ↑s 𝐾)) | |
| 43 | 20, 42 | rhmf 20401 | . . . . . 6 ⊢ (𝐸 ∈ ((Poly1‘𝑆) RingHom (𝑆 ↑s 𝐾)) → 𝐸:(Base‘(Poly1‘𝑆))⟶(Base‘(𝑆 ↑s 𝐾))) |
| 44 | 7, 41, 43 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝐸:(Base‘(Poly1‘𝑆))⟶(Base‘(𝑆 ↑s 𝐾))) |
| 45 | 44 | ffnd 6692 | . . . 4 ⊢ (𝜑 → 𝐸 Fn (Base‘(Poly1‘𝑆))) |
| 46 | 34, 2, 40, 14, 15 | evls1rhm 22216 | . . . . . . 7 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾))) |
| 47 | 7, 17, 46 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾))) |
| 48 | 16, 42 | rhmf 20401 | . . . . . 6 ⊢ (𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾)) → 𝑄:𝐵⟶(Base‘(𝑆 ↑s 𝐾))) |
| 49 | 47, 48 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑄:𝐵⟶(Base‘(𝑆 ↑s 𝐾))) |
| 50 | 49 | ffnd 6692 | . . . 4 ⊢ (𝜑 → 𝑄 Fn 𝐵) |
| 51 | fvreseq1 7014 | . . . 4 ⊢ (((𝐸 Fn (Base‘(Poly1‘𝑆)) ∧ 𝑄 Fn 𝐵) ∧ 𝐵 ⊆ (Base‘(Poly1‘𝑆))) → ((𝐸 ↾ 𝐵) = 𝑄 ↔ ∀𝑚 ∈ 𝐵 (𝐸‘𝑚) = (𝑄‘𝑚))) | |
| 52 | 45, 50, 23, 51 | syl21anc 837 | . . 3 ⊢ (𝜑 → ((𝐸 ↾ 𝐵) = 𝑄 ↔ ∀𝑚 ∈ 𝐵 (𝐸‘𝑚) = (𝑄‘𝑚))) |
| 53 | 39, 52 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐸 ↾ 𝐵) = 𝑄) |
| 54 | 53 | eqcomd 2736 | 1 ⊢ (𝜑 → 𝑄 = (𝐸 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∩ cin 3916 ⊆ wss 3917 ↦ cmpt 5191 ↾ cres 5643 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℕ0cn0 12449 Basecbs 17186 ↾s cress 17207 .rcmulr 17228 Σg cgsu 17410 ↑s cpws 17416 .gcmg 19006 mulGrpcmgp 20056 Ringcrg 20149 CRingccrg 20150 RingHom crh 20385 SubRingcsubrg 20485 PwSer1cps1 22066 Poly1cpl1 22068 coe1cco1 22069 evalSub1 ces1 22207 eval1ce1 22208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-cring 20152 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-lmod 20775 df-lss 20845 df-lsp 20885 df-assa 21769 df-asp 21770 df-ascl 21771 df-psr 21825 df-mvr 21826 df-mpl 21827 df-opsr 21829 df-evls 21988 df-evl 21989 df-psr1 22071 df-vr1 22072 df-ply1 22073 df-coe1 22074 df-evls1 22209 df-evl1 22210 |
| This theorem is referenced by: evls1addd 22265 evls1muld 22266 evls1vsca 22267 evls1fvcl 22269 evls1maprhm 22270 evls1subd 33548 irngss 33689 rtelextdg2lem 33723 |
| Copyright terms: Public domain | W3C validator |