| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressply1evl | Structured version Visualization version GIF version | ||
| Description: Evaluation of a univariate subring polynomial is the same as the evaluation in the bigger ring. (Contributed by Thierry Arnoux, 23-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressply1evl2.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| ressply1evl2.k | ⊢ 𝐾 = (Base‘𝑆) |
| ressply1evl2.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| ressply1evl2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| ressply1evl2.b | ⊢ 𝐵 = (Base‘𝑊) |
| ressply1evl.e | ⊢ 𝐸 = (eval1‘𝑆) |
| ressply1evl.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| ressply1evl.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| Ref | Expression |
|---|---|
| ressply1evl | ⊢ (𝜑 → 𝑄 = (𝐸 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply1evl.e | . . . . . . 7 ⊢ 𝐸 = (eval1‘𝑆) | |
| 2 | ressply1evl2.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑆) | |
| 3 | 1, 2 | evl1fval1 22269 | . . . . . 6 ⊢ 𝐸 = (𝑆 evalSub1 𝐾) |
| 4 | eqid 2735 | . . . . . 6 ⊢ (Poly1‘(𝑆 ↾s 𝐾)) = (Poly1‘(𝑆 ↾s 𝐾)) | |
| 5 | eqid 2735 | . . . . . 6 ⊢ (𝑆 ↾s 𝐾) = (𝑆 ↾s 𝐾) | |
| 6 | eqid 2735 | . . . . . 6 ⊢ (Base‘(Poly1‘(𝑆 ↾s 𝐾))) = (Base‘(Poly1‘(𝑆 ↾s 𝐾))) | |
| 7 | ressply1evl.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑆 ∈ CRing) |
| 9 | 7 | crngringd 20206 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 10 | 2 | subrgid 20533 | . . . . . . . 8 ⊢ (𝑆 ∈ Ring → 𝐾 ∈ (SubRing‘𝑆)) |
| 11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘𝑆)) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝐾 ∈ (SubRing‘𝑆)) |
| 13 | eqid 2735 | . . . . . . . . . 10 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
| 14 | ressply1evl2.u | . . . . . . . . . 10 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 15 | ressply1evl2.w | . . . . . . . . . 10 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 16 | ressply1evl2.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑊) | |
| 17 | ressply1evl.r | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 18 | eqid 2735 | . . . . . . . . . 10 ⊢ (PwSer1‘𝑈) = (PwSer1‘𝑈) | |
| 19 | eqid 2735 | . . . . . . . . . 10 ⊢ (Base‘(PwSer1‘𝑈)) = (Base‘(PwSer1‘𝑈)) | |
| 20 | eqid 2735 | . . . . . . . . . 10 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
| 21 | 13, 14, 15, 16, 17, 18, 19, 20 | ressply1bas2 22163 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆)))) |
| 22 | inss2 4213 | . . . . . . . . 9 ⊢ ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆))) ⊆ (Base‘(Poly1‘𝑆)) | |
| 23 | 21, 22 | eqsstrdi 4003 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘𝑆))) |
| 24 | 2 | ressid 17265 | . . . . . . . . . . 11 ⊢ (𝑆 ∈ CRing → (𝑆 ↾s 𝐾) = 𝑆) |
| 25 | 7, 24 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑆 ↾s 𝐾) = 𝑆) |
| 26 | 25 | fveq2d 6880 | . . . . . . . . 9 ⊢ (𝜑 → (Poly1‘(𝑆 ↾s 𝐾)) = (Poly1‘𝑆)) |
| 27 | 26 | fveq2d 6880 | . . . . . . . 8 ⊢ (𝜑 → (Base‘(Poly1‘(𝑆 ↾s 𝐾))) = (Base‘(Poly1‘𝑆))) |
| 28 | 23, 27 | sseqtrrd 3996 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘(𝑆 ↾s 𝐾)))) |
| 29 | 28 | sselda 3958 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑚 ∈ (Base‘(Poly1‘(𝑆 ↾s 𝐾)))) |
| 30 | eqid 2735 | . . . . . 6 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 31 | eqid 2735 | . . . . . 6 ⊢ (.g‘(mulGrp‘𝑆)) = (.g‘(mulGrp‘𝑆)) | |
| 32 | eqid 2735 | . . . . . 6 ⊢ (coe1‘𝑚) = (coe1‘𝑚) | |
| 33 | 3, 2, 4, 5, 6, 8, 12, 29, 30, 31, 32 | evls1fpws 22307 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → (𝐸‘𝑚) = (𝑥 ∈ 𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ (((coe1‘𝑚)‘𝑘)(.r‘𝑆)(𝑘(.g‘(mulGrp‘𝑆))𝑥)))))) |
| 34 | ressply1evl2.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 35 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑅 ∈ (SubRing‘𝑆)) |
| 36 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑚 ∈ 𝐵) | |
| 37 | 34, 2, 15, 14, 16, 8, 35, 36, 30, 31, 32 | evls1fpws 22307 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → (𝑄‘𝑚) = (𝑥 ∈ 𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ (((coe1‘𝑚)‘𝑘)(.r‘𝑆)(𝑘(.g‘(mulGrp‘𝑆))𝑥)))))) |
| 38 | 33, 37 | eqtr4d 2773 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → (𝐸‘𝑚) = (𝑄‘𝑚)) |
| 39 | 38 | ralrimiva 3132 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ 𝐵 (𝐸‘𝑚) = (𝑄‘𝑚)) |
| 40 | eqid 2735 | . . . . . . 7 ⊢ (𝑆 ↑s 𝐾) = (𝑆 ↑s 𝐾) | |
| 41 | 1, 13, 40, 2 | evl1rhm 22270 | . . . . . 6 ⊢ (𝑆 ∈ CRing → 𝐸 ∈ ((Poly1‘𝑆) RingHom (𝑆 ↑s 𝐾))) |
| 42 | eqid 2735 | . . . . . . 7 ⊢ (Base‘(𝑆 ↑s 𝐾)) = (Base‘(𝑆 ↑s 𝐾)) | |
| 43 | 20, 42 | rhmf 20445 | . . . . . 6 ⊢ (𝐸 ∈ ((Poly1‘𝑆) RingHom (𝑆 ↑s 𝐾)) → 𝐸:(Base‘(Poly1‘𝑆))⟶(Base‘(𝑆 ↑s 𝐾))) |
| 44 | 7, 41, 43 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝐸:(Base‘(Poly1‘𝑆))⟶(Base‘(𝑆 ↑s 𝐾))) |
| 45 | 44 | ffnd 6707 | . . . 4 ⊢ (𝜑 → 𝐸 Fn (Base‘(Poly1‘𝑆))) |
| 46 | 34, 2, 40, 14, 15 | evls1rhm 22260 | . . . . . . 7 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾))) |
| 47 | 7, 17, 46 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾))) |
| 48 | 16, 42 | rhmf 20445 | . . . . . 6 ⊢ (𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾)) → 𝑄:𝐵⟶(Base‘(𝑆 ↑s 𝐾))) |
| 49 | 47, 48 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑄:𝐵⟶(Base‘(𝑆 ↑s 𝐾))) |
| 50 | 49 | ffnd 6707 | . . . 4 ⊢ (𝜑 → 𝑄 Fn 𝐵) |
| 51 | fvreseq1 7029 | . . . 4 ⊢ (((𝐸 Fn (Base‘(Poly1‘𝑆)) ∧ 𝑄 Fn 𝐵) ∧ 𝐵 ⊆ (Base‘(Poly1‘𝑆))) → ((𝐸 ↾ 𝐵) = 𝑄 ↔ ∀𝑚 ∈ 𝐵 (𝐸‘𝑚) = (𝑄‘𝑚))) | |
| 52 | 45, 50, 23, 51 | syl21anc 837 | . . 3 ⊢ (𝜑 → ((𝐸 ↾ 𝐵) = 𝑄 ↔ ∀𝑚 ∈ 𝐵 (𝐸‘𝑚) = (𝑄‘𝑚))) |
| 53 | 39, 52 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐸 ↾ 𝐵) = 𝑄) |
| 54 | 53 | eqcomd 2741 | 1 ⊢ (𝜑 → 𝑄 = (𝐸 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∩ cin 3925 ⊆ wss 3926 ↦ cmpt 5201 ↾ cres 5656 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℕ0cn0 12501 Basecbs 17228 ↾s cress 17251 .rcmulr 17272 Σg cgsu 17454 ↑s cpws 17460 .gcmg 19050 mulGrpcmgp 20100 Ringcrg 20193 CRingccrg 20194 RingHom crh 20429 SubRingcsubrg 20529 PwSer1cps1 22110 Poly1cpl1 22112 coe1cco1 22113 evalSub1 ces1 22251 eval1ce1 22252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-srg 20147 df-ring 20195 df-cring 20196 df-rhm 20432 df-subrng 20506 df-subrg 20530 df-lmod 20819 df-lss 20889 df-lsp 20929 df-assa 21813 df-asp 21814 df-ascl 21815 df-psr 21869 df-mvr 21870 df-mpl 21871 df-opsr 21873 df-evls 22032 df-evl 22033 df-psr1 22115 df-vr1 22116 df-ply1 22117 df-coe1 22118 df-evls1 22253 df-evl1 22254 |
| This theorem is referenced by: evls1addd 22309 evls1muld 22310 evls1vsca 22311 evls1fvcl 22313 evls1maprhm 22314 evls1subd 33585 irngss 33728 rtelextdg2lem 33760 |
| Copyright terms: Public domain | W3C validator |