| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressply1evl | Structured version Visualization version GIF version | ||
| Description: Evaluation of a univariate subring polynomial is the same as the evaluation in the bigger ring. (Contributed by Thierry Arnoux, 23-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressply1evl2.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| ressply1evl2.k | ⊢ 𝐾 = (Base‘𝑆) |
| ressply1evl2.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| ressply1evl2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| ressply1evl2.b | ⊢ 𝐵 = (Base‘𝑊) |
| ressply1evl.e | ⊢ 𝐸 = (eval1‘𝑆) |
| ressply1evl.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| ressply1evl.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| Ref | Expression |
|---|---|
| ressply1evl | ⊢ (𝜑 → 𝑄 = (𝐸 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply1evl.e | . . . . . . 7 ⊢ 𝐸 = (eval1‘𝑆) | |
| 2 | ressply1evl2.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑆) | |
| 3 | 1, 2 | evl1fval1 22254 | . . . . . 6 ⊢ 𝐸 = (𝑆 evalSub1 𝐾) |
| 4 | eqid 2734 | . . . . . 6 ⊢ (Poly1‘(𝑆 ↾s 𝐾)) = (Poly1‘(𝑆 ↾s 𝐾)) | |
| 5 | eqid 2734 | . . . . . 6 ⊢ (𝑆 ↾s 𝐾) = (𝑆 ↾s 𝐾) | |
| 6 | eqid 2734 | . . . . . 6 ⊢ (Base‘(Poly1‘(𝑆 ↾s 𝐾))) = (Base‘(Poly1‘(𝑆 ↾s 𝐾))) | |
| 7 | ressply1evl.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑆 ∈ CRing) |
| 9 | 7 | crngringd 20191 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 10 | 2 | subrgid 20518 | . . . . . . . 8 ⊢ (𝑆 ∈ Ring → 𝐾 ∈ (SubRing‘𝑆)) |
| 11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘𝑆)) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝐾 ∈ (SubRing‘𝑆)) |
| 13 | eqid 2734 | . . . . . . . . . 10 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
| 14 | ressply1evl2.u | . . . . . . . . . 10 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 15 | ressply1evl2.w | . . . . . . . . . 10 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 16 | ressply1evl2.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑊) | |
| 17 | ressply1evl.r | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 18 | eqid 2734 | . . . . . . . . . 10 ⊢ (PwSer1‘𝑈) = (PwSer1‘𝑈) | |
| 19 | eqid 2734 | . . . . . . . . . 10 ⊢ (Base‘(PwSer1‘𝑈)) = (Base‘(PwSer1‘𝑈)) | |
| 20 | eqid 2734 | . . . . . . . . . 10 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
| 21 | 13, 14, 15, 16, 17, 18, 19, 20 | ressply1bas2 22148 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆)))) |
| 22 | inss2 4211 | . . . . . . . . 9 ⊢ ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆))) ⊆ (Base‘(Poly1‘𝑆)) | |
| 23 | 21, 22 | eqsstrdi 4001 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘𝑆))) |
| 24 | 2 | ressid 17250 | . . . . . . . . . . 11 ⊢ (𝑆 ∈ CRing → (𝑆 ↾s 𝐾) = 𝑆) |
| 25 | 7, 24 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑆 ↾s 𝐾) = 𝑆) |
| 26 | 25 | fveq2d 6876 | . . . . . . . . 9 ⊢ (𝜑 → (Poly1‘(𝑆 ↾s 𝐾)) = (Poly1‘𝑆)) |
| 27 | 26 | fveq2d 6876 | . . . . . . . 8 ⊢ (𝜑 → (Base‘(Poly1‘(𝑆 ↾s 𝐾))) = (Base‘(Poly1‘𝑆))) |
| 28 | 23, 27 | sseqtrrd 3994 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘(𝑆 ↾s 𝐾)))) |
| 29 | 28 | sselda 3956 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑚 ∈ (Base‘(Poly1‘(𝑆 ↾s 𝐾)))) |
| 30 | eqid 2734 | . . . . . 6 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 31 | eqid 2734 | . . . . . 6 ⊢ (.g‘(mulGrp‘𝑆)) = (.g‘(mulGrp‘𝑆)) | |
| 32 | eqid 2734 | . . . . . 6 ⊢ (coe1‘𝑚) = (coe1‘𝑚) | |
| 33 | 3, 2, 4, 5, 6, 8, 12, 29, 30, 31, 32 | evls1fpws 22292 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → (𝐸‘𝑚) = (𝑥 ∈ 𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ (((coe1‘𝑚)‘𝑘)(.r‘𝑆)(𝑘(.g‘(mulGrp‘𝑆))𝑥)))))) |
| 34 | ressply1evl2.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 35 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑅 ∈ (SubRing‘𝑆)) |
| 36 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑚 ∈ 𝐵) | |
| 37 | 34, 2, 15, 14, 16, 8, 35, 36, 30, 31, 32 | evls1fpws 22292 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → (𝑄‘𝑚) = (𝑥 ∈ 𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ (((coe1‘𝑚)‘𝑘)(.r‘𝑆)(𝑘(.g‘(mulGrp‘𝑆))𝑥)))))) |
| 38 | 33, 37 | eqtr4d 2772 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → (𝐸‘𝑚) = (𝑄‘𝑚)) |
| 39 | 38 | ralrimiva 3130 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ 𝐵 (𝐸‘𝑚) = (𝑄‘𝑚)) |
| 40 | eqid 2734 | . . . . . . 7 ⊢ (𝑆 ↑s 𝐾) = (𝑆 ↑s 𝐾) | |
| 41 | 1, 13, 40, 2 | evl1rhm 22255 | . . . . . 6 ⊢ (𝑆 ∈ CRing → 𝐸 ∈ ((Poly1‘𝑆) RingHom (𝑆 ↑s 𝐾))) |
| 42 | eqid 2734 | . . . . . . 7 ⊢ (Base‘(𝑆 ↑s 𝐾)) = (Base‘(𝑆 ↑s 𝐾)) | |
| 43 | 20, 42 | rhmf 20430 | . . . . . 6 ⊢ (𝐸 ∈ ((Poly1‘𝑆) RingHom (𝑆 ↑s 𝐾)) → 𝐸:(Base‘(Poly1‘𝑆))⟶(Base‘(𝑆 ↑s 𝐾))) |
| 44 | 7, 41, 43 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝐸:(Base‘(Poly1‘𝑆))⟶(Base‘(𝑆 ↑s 𝐾))) |
| 45 | 44 | ffnd 6703 | . . . 4 ⊢ (𝜑 → 𝐸 Fn (Base‘(Poly1‘𝑆))) |
| 46 | 34, 2, 40, 14, 15 | evls1rhm 22245 | . . . . . . 7 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾))) |
| 47 | 7, 17, 46 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾))) |
| 48 | 16, 42 | rhmf 20430 | . . . . . 6 ⊢ (𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾)) → 𝑄:𝐵⟶(Base‘(𝑆 ↑s 𝐾))) |
| 49 | 47, 48 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑄:𝐵⟶(Base‘(𝑆 ↑s 𝐾))) |
| 50 | 49 | ffnd 6703 | . . . 4 ⊢ (𝜑 → 𝑄 Fn 𝐵) |
| 51 | fvreseq1 7025 | . . . 4 ⊢ (((𝐸 Fn (Base‘(Poly1‘𝑆)) ∧ 𝑄 Fn 𝐵) ∧ 𝐵 ⊆ (Base‘(Poly1‘𝑆))) → ((𝐸 ↾ 𝐵) = 𝑄 ↔ ∀𝑚 ∈ 𝐵 (𝐸‘𝑚) = (𝑄‘𝑚))) | |
| 52 | 45, 50, 23, 51 | syl21anc 837 | . . 3 ⊢ (𝜑 → ((𝐸 ↾ 𝐵) = 𝑄 ↔ ∀𝑚 ∈ 𝐵 (𝐸‘𝑚) = (𝑄‘𝑚))) |
| 53 | 39, 52 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐸 ↾ 𝐵) = 𝑄) |
| 54 | 53 | eqcomd 2740 | 1 ⊢ (𝜑 → 𝑄 = (𝐸 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∩ cin 3923 ⊆ wss 3924 ↦ cmpt 5198 ↾ cres 5653 Fn wfn 6522 ⟶wf 6523 ‘cfv 6527 (class class class)co 7399 ℕ0cn0 12493 Basecbs 17213 ↾s cress 17236 .rcmulr 17257 Σg cgsu 17439 ↑s cpws 17445 .gcmg 19035 mulGrpcmgp 20085 Ringcrg 20178 CRingccrg 20179 RingHom crh 20414 SubRingcsubrg 20514 PwSer1cps1 22095 Poly1cpl1 22097 coe1cco1 22098 evalSub1 ces1 22236 eval1ce1 22237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-ofr 7666 df-om 7856 df-1st 7982 df-2nd 7983 df-supp 8154 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9368 df-sup 9448 df-oi 9516 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-fz 13514 df-fzo 13661 df-seq 14009 df-hash 14337 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-sca 17272 df-vsca 17273 df-ip 17274 df-tset 17275 df-ple 17276 df-ds 17278 df-hom 17280 df-cco 17281 df-0g 17440 df-gsum 17441 df-prds 17446 df-pws 17448 df-mre 17583 df-mrc 17584 df-acs 17586 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18746 df-submnd 18747 df-grp 18904 df-minusg 18905 df-sbg 18906 df-mulg 19036 df-subg 19091 df-ghm 19181 df-cntz 19285 df-cmn 19748 df-abl 19749 df-mgp 20086 df-rng 20098 df-ur 20127 df-srg 20132 df-ring 20180 df-cring 20181 df-rhm 20417 df-subrng 20491 df-subrg 20515 df-lmod 20804 df-lss 20874 df-lsp 20914 df-assa 21798 df-asp 21799 df-ascl 21800 df-psr 21854 df-mvr 21855 df-mpl 21856 df-opsr 21858 df-evls 22017 df-evl 22018 df-psr1 22100 df-vr1 22101 df-ply1 22102 df-coe1 22103 df-evls1 22238 df-evl1 22239 |
| This theorem is referenced by: evls1addd 22294 evls1muld 22295 evls1vsca 22296 evls1fvcl 22298 evls1maprhm 22299 evls1subd 33502 irngss 33644 rtelextdg2lem 33676 |
| Copyright terms: Public domain | W3C validator |