| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressply1evl | Structured version Visualization version GIF version | ||
| Description: Evaluation of a univariate subring polynomial is the same as the evaluation in the bigger ring. (Contributed by Thierry Arnoux, 23-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressply1evl2.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| ressply1evl2.k | ⊢ 𝐾 = (Base‘𝑆) |
| ressply1evl2.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| ressply1evl2.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| ressply1evl2.b | ⊢ 𝐵 = (Base‘𝑊) |
| ressply1evl.e | ⊢ 𝐸 = (eval1‘𝑆) |
| ressply1evl.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| ressply1evl.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| Ref | Expression |
|---|---|
| ressply1evl | ⊢ (𝜑 → 𝑄 = (𝐸 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply1evl.e | . . . . . . 7 ⊢ 𝐸 = (eval1‘𝑆) | |
| 2 | ressply1evl2.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑆) | |
| 3 | 1, 2 | evl1fval1 22251 | . . . . . 6 ⊢ 𝐸 = (𝑆 evalSub1 𝐾) |
| 4 | eqid 2729 | . . . . . 6 ⊢ (Poly1‘(𝑆 ↾s 𝐾)) = (Poly1‘(𝑆 ↾s 𝐾)) | |
| 5 | eqid 2729 | . . . . . 6 ⊢ (𝑆 ↾s 𝐾) = (𝑆 ↾s 𝐾) | |
| 6 | eqid 2729 | . . . . . 6 ⊢ (Base‘(Poly1‘(𝑆 ↾s 𝐾))) = (Base‘(Poly1‘(𝑆 ↾s 𝐾))) | |
| 7 | ressply1evl.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑆 ∈ CRing) |
| 9 | 7 | crngringd 20166 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 10 | 2 | subrgid 20493 | . . . . . . . 8 ⊢ (𝑆 ∈ Ring → 𝐾 ∈ (SubRing‘𝑆)) |
| 11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘𝑆)) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝐾 ∈ (SubRing‘𝑆)) |
| 13 | eqid 2729 | . . . . . . . . . 10 ⊢ (Poly1‘𝑆) = (Poly1‘𝑆) | |
| 14 | ressply1evl2.u | . . . . . . . . . 10 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 15 | ressply1evl2.w | . . . . . . . . . 10 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 16 | ressply1evl2.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑊) | |
| 17 | ressply1evl.r | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 18 | eqid 2729 | . . . . . . . . . 10 ⊢ (PwSer1‘𝑈) = (PwSer1‘𝑈) | |
| 19 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘(PwSer1‘𝑈)) = (Base‘(PwSer1‘𝑈)) | |
| 20 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘(Poly1‘𝑆)) = (Base‘(Poly1‘𝑆)) | |
| 21 | 13, 14, 15, 16, 17, 18, 19, 20 | ressply1bas2 22145 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆)))) |
| 22 | inss2 4197 | . . . . . . . . 9 ⊢ ((Base‘(PwSer1‘𝑈)) ∩ (Base‘(Poly1‘𝑆))) ⊆ (Base‘(Poly1‘𝑆)) | |
| 23 | 21, 22 | eqsstrdi 3988 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘𝑆))) |
| 24 | 2 | ressid 17190 | . . . . . . . . . . 11 ⊢ (𝑆 ∈ CRing → (𝑆 ↾s 𝐾) = 𝑆) |
| 25 | 7, 24 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑆 ↾s 𝐾) = 𝑆) |
| 26 | 25 | fveq2d 6844 | . . . . . . . . 9 ⊢ (𝜑 → (Poly1‘(𝑆 ↾s 𝐾)) = (Poly1‘𝑆)) |
| 27 | 26 | fveq2d 6844 | . . . . . . . 8 ⊢ (𝜑 → (Base‘(Poly1‘(𝑆 ↾s 𝐾))) = (Base‘(Poly1‘𝑆))) |
| 28 | 23, 27 | sseqtrrd 3981 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(Poly1‘(𝑆 ↾s 𝐾)))) |
| 29 | 28 | sselda 3943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑚 ∈ (Base‘(Poly1‘(𝑆 ↾s 𝐾)))) |
| 30 | eqid 2729 | . . . . . 6 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 31 | eqid 2729 | . . . . . 6 ⊢ (.g‘(mulGrp‘𝑆)) = (.g‘(mulGrp‘𝑆)) | |
| 32 | eqid 2729 | . . . . . 6 ⊢ (coe1‘𝑚) = (coe1‘𝑚) | |
| 33 | 3, 2, 4, 5, 6, 8, 12, 29, 30, 31, 32 | evls1fpws 22289 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → (𝐸‘𝑚) = (𝑥 ∈ 𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ (((coe1‘𝑚)‘𝑘)(.r‘𝑆)(𝑘(.g‘(mulGrp‘𝑆))𝑥)))))) |
| 34 | ressply1evl2.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 35 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑅 ∈ (SubRing‘𝑆)) |
| 36 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → 𝑚 ∈ 𝐵) | |
| 37 | 34, 2, 15, 14, 16, 8, 35, 36, 30, 31, 32 | evls1fpws 22289 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → (𝑄‘𝑚) = (𝑥 ∈ 𝐾 ↦ (𝑆 Σg (𝑘 ∈ ℕ0 ↦ (((coe1‘𝑚)‘𝑘)(.r‘𝑆)(𝑘(.g‘(mulGrp‘𝑆))𝑥)))))) |
| 38 | 33, 37 | eqtr4d 2767 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝐵) → (𝐸‘𝑚) = (𝑄‘𝑚)) |
| 39 | 38 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ 𝐵 (𝐸‘𝑚) = (𝑄‘𝑚)) |
| 40 | eqid 2729 | . . . . . . 7 ⊢ (𝑆 ↑s 𝐾) = (𝑆 ↑s 𝐾) | |
| 41 | 1, 13, 40, 2 | evl1rhm 22252 | . . . . . 6 ⊢ (𝑆 ∈ CRing → 𝐸 ∈ ((Poly1‘𝑆) RingHom (𝑆 ↑s 𝐾))) |
| 42 | eqid 2729 | . . . . . . 7 ⊢ (Base‘(𝑆 ↑s 𝐾)) = (Base‘(𝑆 ↑s 𝐾)) | |
| 43 | 20, 42 | rhmf 20405 | . . . . . 6 ⊢ (𝐸 ∈ ((Poly1‘𝑆) RingHom (𝑆 ↑s 𝐾)) → 𝐸:(Base‘(Poly1‘𝑆))⟶(Base‘(𝑆 ↑s 𝐾))) |
| 44 | 7, 41, 43 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝐸:(Base‘(Poly1‘𝑆))⟶(Base‘(𝑆 ↑s 𝐾))) |
| 45 | 44 | ffnd 6671 | . . . 4 ⊢ (𝜑 → 𝐸 Fn (Base‘(Poly1‘𝑆))) |
| 46 | 34, 2, 40, 14, 15 | evls1rhm 22242 | . . . . . . 7 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾))) |
| 47 | 7, 17, 46 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾))) |
| 48 | 16, 42 | rhmf 20405 | . . . . . 6 ⊢ (𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾)) → 𝑄:𝐵⟶(Base‘(𝑆 ↑s 𝐾))) |
| 49 | 47, 48 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑄:𝐵⟶(Base‘(𝑆 ↑s 𝐾))) |
| 50 | 49 | ffnd 6671 | . . . 4 ⊢ (𝜑 → 𝑄 Fn 𝐵) |
| 51 | fvreseq1 6993 | . . . 4 ⊢ (((𝐸 Fn (Base‘(Poly1‘𝑆)) ∧ 𝑄 Fn 𝐵) ∧ 𝐵 ⊆ (Base‘(Poly1‘𝑆))) → ((𝐸 ↾ 𝐵) = 𝑄 ↔ ∀𝑚 ∈ 𝐵 (𝐸‘𝑚) = (𝑄‘𝑚))) | |
| 52 | 45, 50, 23, 51 | syl21anc 837 | . . 3 ⊢ (𝜑 → ((𝐸 ↾ 𝐵) = 𝑄 ↔ ∀𝑚 ∈ 𝐵 (𝐸‘𝑚) = (𝑄‘𝑚))) |
| 53 | 39, 52 | mpbird 257 | . 2 ⊢ (𝜑 → (𝐸 ↾ 𝐵) = 𝑄) |
| 54 | 53 | eqcomd 2735 | 1 ⊢ (𝜑 → 𝑄 = (𝐸 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3910 ⊆ wss 3911 ↦ cmpt 5183 ↾ cres 5633 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℕ0cn0 12418 Basecbs 17155 ↾s cress 17176 .rcmulr 17197 Σg cgsu 17379 ↑s cpws 17385 .gcmg 18981 mulGrpcmgp 20060 Ringcrg 20153 CRingccrg 20154 RingHom crh 20389 SubRingcsubrg 20489 PwSer1cps1 22092 Poly1cpl1 22094 coe1cco1 22095 evalSub1 ces1 22233 eval1ce1 22234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-srg 20107 df-ring 20155 df-cring 20156 df-rhm 20392 df-subrng 20466 df-subrg 20490 df-lmod 20800 df-lss 20870 df-lsp 20910 df-assa 21795 df-asp 21796 df-ascl 21797 df-psr 21851 df-mvr 21852 df-mpl 21853 df-opsr 21855 df-evls 22014 df-evl 22015 df-psr1 22097 df-vr1 22098 df-ply1 22099 df-coe1 22100 df-evls1 22235 df-evl1 22236 |
| This theorem is referenced by: evls1addd 22291 evls1muld 22292 evls1vsca 22293 evls1fvcl 22295 evls1maprhm 22296 evls1subd 33534 irngss 33675 rtelextdg2lem 33709 |
| Copyright terms: Public domain | W3C validator |