Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqfres Structured version   Visualization version   GIF version

Theorem sseqfres 31678
Description: The first elements in the strong recursive sequence are the sequence initializer. (Contributed by Thierry Arnoux, 23-Apr-2019.)
Hypotheses
Ref Expression
sseqval.1 (𝜑𝑆 ∈ V)
sseqval.2 (𝜑𝑀 ∈ Word 𝑆)
sseqval.3 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
sseqval.4 (𝜑𝐹:𝑊𝑆)
Assertion
Ref Expression
sseqfres (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀)

Proof of Theorem sseqfres
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 sseqval.1 . . . . 5 (𝜑𝑆 ∈ V)
21adantr 484 . . . 4 ((𝜑𝑖 ∈ (0..^(♯‘𝑀))) → 𝑆 ∈ V)
3 sseqval.2 . . . . 5 (𝜑𝑀 ∈ Word 𝑆)
43adantr 484 . . . 4 ((𝜑𝑖 ∈ (0..^(♯‘𝑀))) → 𝑀 ∈ Word 𝑆)
5 sseqval.3 . . . 4 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
6 sseqval.4 . . . . 5 (𝜑𝐹:𝑊𝑆)
76adantr 484 . . . 4 ((𝜑𝑖 ∈ (0..^(♯‘𝑀))) → 𝐹:𝑊𝑆)
8 simpr 488 . . . 4 ((𝜑𝑖 ∈ (0..^(♯‘𝑀))) → 𝑖 ∈ (0..^(♯‘𝑀)))
92, 4, 5, 7, 8sseqfv1 31674 . . 3 ((𝜑𝑖 ∈ (0..^(♯‘𝑀))) → ((𝑀seqstr𝐹)‘𝑖) = (𝑀𝑖))
109ralrimiva 3177 . 2 (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑀))((𝑀seqstr𝐹)‘𝑖) = (𝑀𝑖))
111, 3, 5, 6sseqfn 31675 . . 3 (𝜑 → (𝑀seqstr𝐹) Fn ℕ0)
12 wrdfn 13878 . . . 4 (𝑀 ∈ Word 𝑆𝑀 Fn (0..^(♯‘𝑀)))
133, 12syl 17 . . 3 (𝜑𝑀 Fn (0..^(♯‘𝑀)))
14 fzo0ssnn0 13120 . . . 4 (0..^(♯‘𝑀)) ⊆ ℕ0
1514a1i 11 . . 3 (𝜑 → (0..^(♯‘𝑀)) ⊆ ℕ0)
16 fvreseq1 6798 . . 3 ((((𝑀seqstr𝐹) Fn ℕ0𝑀 Fn (0..^(♯‘𝑀))) ∧ (0..^(♯‘𝑀)) ⊆ ℕ0) → (((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀 ↔ ∀𝑖 ∈ (0..^(♯‘𝑀))((𝑀seqstr𝐹)‘𝑖) = (𝑀𝑖)))
1711, 13, 15, 16syl21anc 836 . 2 (𝜑 → (((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀 ↔ ∀𝑖 ∈ (0..^(♯‘𝑀))((𝑀seqstr𝐹)‘𝑖) = (𝑀𝑖)))
1810, 17mpbird 260 1 (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3133  Vcvv 3480  cin 3918  wss 3919  ccnv 5542  cres 5545  cima 5546   Fn wfn 6339  wf 6340  cfv 6344  (class class class)co 7146  0cc0 10531  0cn0 11892  cuz 12238  ..^cfzo 13035  chash 13693  Word cword 13864  seqstrcsseq 31668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-inf2 9097  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893  df-fzo 13036  df-seq 13372  df-hash 13694  df-word 13865  df-lsw 13913  df-s1 13948  df-sseq 31669
This theorem is referenced by:  sseqp1  31680
  Copyright terms: Public domain W3C validator