![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sseqfres | Structured version Visualization version GIF version |
Description: The first elements in the strong recursive sequence are the sequence initializer. (Contributed by Thierry Arnoux, 23-Apr-2019.) |
Ref | Expression |
---|---|
sseqval.1 | ⊢ (𝜑 → 𝑆 ∈ V) |
sseqval.2 | ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) |
sseqval.3 | ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) |
sseqval.4 | ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) |
Ref | Expression |
---|---|
sseqfres | ⊢ (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqval.1 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ V) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝑀))) → 𝑆 ∈ V) |
3 | sseqval.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝑀))) → 𝑀 ∈ Word 𝑆) |
5 | sseqval.3 | . . . 4 ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) | |
6 | sseqval.4 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝑀))) → 𝐹:𝑊⟶𝑆) |
8 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝑀))) → 𝑖 ∈ (0..^(♯‘𝑀))) | |
9 | 2, 4, 5, 7, 8 | sseqfv1 34354 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝑀))) → ((𝑀seqstr𝐹)‘𝑖) = (𝑀‘𝑖)) |
10 | 9 | ralrimiva 3152 | . 2 ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑀))((𝑀seqstr𝐹)‘𝑖) = (𝑀‘𝑖)) |
11 | 1, 3, 5, 6 | sseqfn 34355 | . . 3 ⊢ (𝜑 → (𝑀seqstr𝐹) Fn ℕ0) |
12 | wrdfn 14576 | . . . 4 ⊢ (𝑀 ∈ Word 𝑆 → 𝑀 Fn (0..^(♯‘𝑀))) | |
13 | 3, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 Fn (0..^(♯‘𝑀))) |
14 | fzo0ssnn0 13797 | . . . 4 ⊢ (0..^(♯‘𝑀)) ⊆ ℕ0 | |
15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → (0..^(♯‘𝑀)) ⊆ ℕ0) |
16 | fvreseq1 7072 | . . 3 ⊢ ((((𝑀seqstr𝐹) Fn ℕ0 ∧ 𝑀 Fn (0..^(♯‘𝑀))) ∧ (0..^(♯‘𝑀)) ⊆ ℕ0) → (((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀 ↔ ∀𝑖 ∈ (0..^(♯‘𝑀))((𝑀seqstr𝐹)‘𝑖) = (𝑀‘𝑖))) | |
17 | 11, 13, 15, 16 | syl21anc 837 | . 2 ⊢ (𝜑 → (((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀 ↔ ∀𝑖 ∈ (0..^(♯‘𝑀))((𝑀seqstr𝐹)‘𝑖) = (𝑀‘𝑖))) |
18 | 10, 17 | mpbird 257 | 1 ⊢ (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ◡ccnv 5699 ↾ cres 5702 “ cima 5703 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℕ0cn0 12553 ℤ≥cuz 12903 ..^cfzo 13711 ♯chash 14379 Word cword 14562 seqstrcsseq 34348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-word 14563 df-lsw 14611 df-s1 14644 df-sseq 34349 |
This theorem is referenced by: sseqp1 34360 |
Copyright terms: Public domain | W3C validator |