![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sseqfres | Structured version Visualization version GIF version |
Description: The first elements in the strong recursive sequence are the sequence initializer. (Contributed by Thierry Arnoux, 23-Apr-2019.) |
Ref | Expression |
---|---|
sseqval.1 | ⊢ (𝜑 → 𝑆 ∈ V) |
sseqval.2 | ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) |
sseqval.3 | ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) |
sseqval.4 | ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) |
Ref | Expression |
---|---|
sseqfres | ⊢ (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqval.1 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ V) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝑀))) → 𝑆 ∈ V) |
3 | sseqval.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝑀))) → 𝑀 ∈ Word 𝑆) |
5 | sseqval.3 | . . . 4 ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) | |
6 | sseqval.4 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝑀))) → 𝐹:𝑊⟶𝑆) |
8 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝑀))) → 𝑖 ∈ (0..^(♯‘𝑀))) | |
9 | 2, 4, 5, 7, 8 | sseqfv1 33918 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝑀))) → ((𝑀seqstr𝐹)‘𝑖) = (𝑀‘𝑖)) |
10 | 9 | ralrimiva 3140 | . 2 ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑀))((𝑀seqstr𝐹)‘𝑖) = (𝑀‘𝑖)) |
11 | 1, 3, 5, 6 | sseqfn 33919 | . . 3 ⊢ (𝜑 → (𝑀seqstr𝐹) Fn ℕ0) |
12 | wrdfn 14484 | . . . 4 ⊢ (𝑀 ∈ Word 𝑆 → 𝑀 Fn (0..^(♯‘𝑀))) | |
13 | 3, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 Fn (0..^(♯‘𝑀))) |
14 | fzo0ssnn0 13719 | . . . 4 ⊢ (0..^(♯‘𝑀)) ⊆ ℕ0 | |
15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → (0..^(♯‘𝑀)) ⊆ ℕ0) |
16 | fvreseq1 7034 | . . 3 ⊢ ((((𝑀seqstr𝐹) Fn ℕ0 ∧ 𝑀 Fn (0..^(♯‘𝑀))) ∧ (0..^(♯‘𝑀)) ⊆ ℕ0) → (((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀 ↔ ∀𝑖 ∈ (0..^(♯‘𝑀))((𝑀seqstr𝐹)‘𝑖) = (𝑀‘𝑖))) | |
17 | 11, 13, 15, 16 | syl21anc 835 | . 2 ⊢ (𝜑 → (((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀 ↔ ∀𝑖 ∈ (0..^(♯‘𝑀))((𝑀seqstr𝐹)‘𝑖) = (𝑀‘𝑖))) |
18 | 10, 17 | mpbird 257 | 1 ⊢ (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 Vcvv 3468 ∩ cin 3942 ⊆ wss 3943 ◡ccnv 5668 ↾ cres 5671 “ cima 5672 Fn wfn 6532 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 0cc0 11112 ℕ0cn0 12476 ℤ≥cuz 12826 ..^cfzo 13633 ♯chash 14295 Word cword 14470 seqstrcsseq 33912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-fzo 13634 df-seq 13973 df-hash 14296 df-word 14471 df-lsw 14519 df-s1 14552 df-sseq 33913 |
This theorem is referenced by: sseqp1 33924 |
Copyright terms: Public domain | W3C validator |