| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sseqfres | Structured version Visualization version GIF version | ||
| Description: The first elements in the strong recursive sequence are the sequence initializer. (Contributed by Thierry Arnoux, 23-Apr-2019.) |
| Ref | Expression |
|---|---|
| sseqval.1 | ⊢ (𝜑 → 𝑆 ∈ V) |
| sseqval.2 | ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) |
| sseqval.3 | ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) |
| sseqval.4 | ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) |
| Ref | Expression |
|---|---|
| sseqfres | ⊢ (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqval.1 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ V) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝑀))) → 𝑆 ∈ V) |
| 3 | sseqval.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝑀))) → 𝑀 ∈ Word 𝑆) |
| 5 | sseqval.3 | . . . 4 ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) | |
| 6 | sseqval.4 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝑀))) → 𝐹:𝑊⟶𝑆) |
| 8 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝑀))) → 𝑖 ∈ (0..^(♯‘𝑀))) | |
| 9 | 2, 4, 5, 7, 8 | sseqfv1 34356 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝑀))) → ((𝑀seqstr𝐹)‘𝑖) = (𝑀‘𝑖)) |
| 10 | 9 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑀))((𝑀seqstr𝐹)‘𝑖) = (𝑀‘𝑖)) |
| 11 | 1, 3, 5, 6 | sseqfn 34357 | . . 3 ⊢ (𝜑 → (𝑀seqstr𝐹) Fn ℕ0) |
| 12 | wrdfn 14453 | . . . 4 ⊢ (𝑀 ∈ Word 𝑆 → 𝑀 Fn (0..^(♯‘𝑀))) | |
| 13 | 3, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 Fn (0..^(♯‘𝑀))) |
| 14 | fzo0ssnn0 13667 | . . . 4 ⊢ (0..^(♯‘𝑀)) ⊆ ℕ0 | |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → (0..^(♯‘𝑀)) ⊆ ℕ0) |
| 16 | fvreseq1 6977 | . . 3 ⊢ ((((𝑀seqstr𝐹) Fn ℕ0 ∧ 𝑀 Fn (0..^(♯‘𝑀))) ∧ (0..^(♯‘𝑀)) ⊆ ℕ0) → (((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀 ↔ ∀𝑖 ∈ (0..^(♯‘𝑀))((𝑀seqstr𝐹)‘𝑖) = (𝑀‘𝑖))) | |
| 17 | 11, 13, 15, 16 | syl21anc 837 | . 2 ⊢ (𝜑 → (((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀 ↔ ∀𝑖 ∈ (0..^(♯‘𝑀))((𝑀seqstr𝐹)‘𝑖) = (𝑀‘𝑖))) |
| 18 | 10, 17 | mpbird 257 | 1 ⊢ (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ◡ccnv 5622 ↾ cres 5625 “ cima 5626 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 0cc0 11028 ℕ0cn0 12402 ℤ≥cuz 12753 ..^cfzo 13575 ♯chash 14255 Word cword 14438 seqstrcsseq 34350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-word 14439 df-lsw 14488 df-s1 14521 df-sseq 34351 |
| This theorem is referenced by: sseqp1 34362 |
| Copyright terms: Public domain | W3C validator |