Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimedgi Structured version   Visualization version   GIF version

Theorem grimedgi 48060
Description: Graph isomorphisms map edges onto the corresponding edges. (Contributed by AV, 30-Dec-2025.)
Hypotheses
Ref Expression
grimedg.v 𝑉 = (Vtx‘𝐺)
grimedg.i 𝐼 = (Edg‘𝐺)
grimedg.e 𝐸 = (Edg‘𝐻)
Assertion
Ref Expression
grimedgi ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐾𝐼 → (𝐹𝐾) ∈ 𝐸))

Proof of Theorem grimedgi
StepHypRef Expression
1 grimedg.v . . 3 𝑉 = (Vtx‘𝐺)
2 grimedg.i . . 3 𝐼 = (Edg‘𝐺)
3 grimedg.e . . 3 𝐸 = (Edg‘𝐻)
41, 2, 3grimedg 48059 . 2 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐾𝐼 ↔ ((𝐹𝐾) ∈ 𝐸𝐾𝑉)))
5 simpl 482 . 2 (((𝐹𝐾) ∈ 𝐸𝐾𝑉) → (𝐹𝐾) ∈ 𝐸)
64, 5biimtrdi 253 1 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐾𝐼 → (𝐹𝐾) ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wss 3898  cima 5622  cfv 6486  (class class class)co 7352  Vtxcvtx 28976  Edgcedg 29027  UHGraphcuhgr 29036   GraphIso cgrim 47999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-edg 29028  df-uhgr 29038  df-grim 48002
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator