| Step | Hyp | Ref
| Expression |
| 1 | | grimedg.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | | eqid 2737 |
. . . . . 6
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
| 3 | | eqid 2737 |
. . . . . 6
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
| 4 | | eqid 2737 |
. . . . . 6
⊢
(iEdg‘𝐻) =
(iEdg‘𝐻) |
| 5 | 1, 2, 3, 4 | grimprop 47869 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))))) |
| 6 | | grimedg.i |
. . . . . . . . . . . 12
⊢ 𝐼 = (Edg‘𝐺) |
| 7 | 6 | eleq2i 2833 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ 𝐼 ↔ 𝐾 ∈ (Edg‘𝐺)) |
| 8 | 3 | uhgredgiedgb 29143 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ UHGraph → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘))) |
| 9 | 8 | ad2antll 729 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘))) |
| 10 | 7, 9 | bitrid 283 |
. . . . . . . . . 10
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (𝐾 ∈ 𝐼 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘))) |
| 11 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑘 → ((iEdg‘𝐻)‘(𝑗‘𝑖)) = ((iEdg‘𝐻)‘(𝑗‘𝑘))) |
| 12 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑘 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑘)) |
| 13 | 12 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑘 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))) |
| 14 | 11, 13 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑘 → (((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))) |
| 15 | 14 | rspcv 3618 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))) |
| 16 | 15 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))) |
| 17 | 4 | uhgrfun 29083 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐻 ∈ UHGraph → Fun
(iEdg‘𝐻)) |
| 18 | 17 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → Fun (iEdg‘𝐻)) |
| 19 | | f1of 6848 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻)) |
| 20 | 19 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻))) →
𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻)) |
| 21 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻))) →
𝑘 ∈ dom
(iEdg‘𝐺)) |
| 22 | 20, 21 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻))) →
(𝑗‘𝑘) ∈ dom (iEdg‘𝐻)) |
| 23 | 4 | iedgedg 29067 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((Fun
(iEdg‘𝐻) ∧ (𝑗‘𝑘) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ (Edg‘𝐻)) |
| 24 | | grimedg.e |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝐸 = (Edg‘𝐻) |
| 25 | 23, 24 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((Fun
(iEdg‘𝐻) ∧ (𝑗‘𝑘) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ 𝐸) |
| 26 | 18, 22, 25 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻))) →
((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ 𝐸) |
| 27 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) = ((iEdg‘𝐻)‘(𝑗‘𝑘)) → ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸 ↔ ((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ 𝐸)) |
| 28 | 27 | eqcoms 2745 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸 ↔ ((iEdg‘𝐻)‘(𝑗‘𝑘)) ∈ 𝐸)) |
| 29 | 26, 28 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻))) →
(((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸)) |
| 30 | 29 | ex 412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
(((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸))) |
| 31 | 30 | com23 86 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (((iEdg‘𝐻)‘(𝑗‘𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
(𝐹 “
((iEdg‘𝐺)‘𝑘)) ∈ 𝐸))) |
| 32 | 16, 31 | syld 47 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
(𝐹 “
((iEdg‘𝐺)‘𝑘)) ∈ 𝐸))) |
| 33 | 32 | com13 88 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
(∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸))) |
| 34 | 33 | impr 454 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸)) |
| 35 | 34 | impl 455 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸) |
| 37 | | imaeq2 6074 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹 “ 𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))) |
| 38 | 37 | eleq1d 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 = ((iEdg‘𝐺)‘𝑘) → ((𝐹 “ 𝐾) ∈ 𝐸 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸)) |
| 39 | 38 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → ((𝐹 “ 𝐾) ∈ 𝐸 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸)) |
| 40 | 36, 39 | mpbird 257 |
. . . . . . . . . . . . 13
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ 𝐾) ∈ 𝐸) |
| 41 | 1, 3 | uhgrss 29081 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ UHGraph ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑘) ⊆ 𝑉) |
| 42 | 41 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ UHGraph → (𝑘 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑘) ⊆ 𝑉)) |
| 43 | 42 | ad2antll 729 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (𝑘 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑘) ⊆ 𝑉)) |
| 44 | 43 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑘) ⊆ 𝑉) |
| 45 | 44 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → ((iEdg‘𝐺)‘𝑘) ⊆ 𝑉) |
| 46 | | sseq1 4009 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐾 ⊆ 𝑉 ↔ ((iEdg‘𝐺)‘𝑘) ⊆ 𝑉)) |
| 47 | 46 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐾 ⊆ 𝑉 ↔ ((iEdg‘𝐺)‘𝑘) ⊆ 𝑉)) |
| 48 | 45, 47 | mpbird 257 |
. . . . . . . . . . . . 13
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → 𝐾 ⊆ 𝑉) |
| 49 | 40, 48 | jca 511 |
. . . . . . . . . . . 12
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → ((𝐹 “ 𝐾) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉)) |
| 50 | 49 | ex 412 |
. . . . . . . . . . 11
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐾 = ((iEdg‘𝐺)‘𝑘) → ((𝐹 “ 𝐾) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉))) |
| 51 | 50 | rexlimdva 3155 |
. . . . . . . . . 10
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘) → ((𝐹 “ 𝐾) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉))) |
| 52 | 10, 51 | sylbid 240 |
. . . . . . . . 9
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (𝐾 ∈ 𝐼 → ((𝐹 “ 𝐾) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉))) |
| 53 | 24 | eleq2i 2833 |
. . . . . . . . . . . 12
⊢ ((𝐹 “ 𝐾) ∈ 𝐸 ↔ (𝐹 “ 𝐾) ∈ (Edg‘𝐻)) |
| 54 | 4 | uhgredgiedgb 29143 |
. . . . . . . . . . . . 13
⊢ (𝐻 ∈ UHGraph → ((𝐹 “ 𝐾) ∈ (Edg‘𝐻) ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)(𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘))) |
| 55 | 54 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → ((𝐹 “ 𝐾) ∈ (Edg‘𝐻) ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)(𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘))) |
| 56 | 53, 55 | bitrid 283 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → ((𝐹 “ 𝐾) ∈ 𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)(𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘))) |
| 57 | | f1ofo 6855 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) → 𝑗:dom (iEdg‘𝐺)–onto→dom (iEdg‘𝐻)) |
| 58 | 57 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → 𝑗:dom (iEdg‘𝐺)–onto→dom (iEdg‘𝐻)) |
| 59 | 58 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → 𝑗:dom (iEdg‘𝐺)–onto→dom (iEdg‘𝐻)) |
| 60 | | foelrn 7127 |
. . . . . . . . . . . . . 14
⊢ ((𝑗:dom (iEdg‘𝐺)–onto→dom (iEdg‘𝐻) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃𝑙 ∈ dom (iEdg‘𝐺)𝑘 = (𝑗‘𝑙)) |
| 61 | 59, 60 | sylan 580 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃𝑙 ∈ dom (iEdg‘𝐺)𝑘 = (𝑗‘𝑙)) |
| 62 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑙 → ((iEdg‘𝐻)‘(𝑗‘𝑖)) = ((iEdg‘𝐻)‘(𝑗‘𝑙))) |
| 63 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑙 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑙)) |
| 64 | 63 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑙 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) |
| 65 | 62, 64 | eqeq12d 2753 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑙 → (((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)))) |
| 66 | 65 | rspcv 3618 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)))) |
| 67 | 66 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
(𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ 𝑙 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)))) |
| 68 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 = (𝑗‘𝑙) → ((iEdg‘𝐻)‘𝑘) = ((iEdg‘𝐻)‘(𝑗‘𝑙))) |
| 69 | 68 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 = (𝑗‘𝑙) → ((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) ↔ (𝐹 “ 𝐾) = ((iEdg‘𝐻)‘(𝑗‘𝑙)))) |
| 70 | 69 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) → ((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) ↔ (𝐹 “ 𝐾) = ((iEdg‘𝐻)‘(𝑗‘𝑙)))) |
| 71 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → 𝐻 ∈
UHGraph) |
| 72 | 71 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) →
𝐻 ∈
UHGraph) |
| 73 | | simplrr 778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) → 𝑘 ∈ dom (iEdg‘𝐻)) |
| 74 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑘 = (𝑗‘𝑙) → (𝑘 ∈ dom (iEdg‘𝐻) ↔ (𝑗‘𝑙) ∈ dom (iEdg‘𝐻))) |
| 75 | 74 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) → (𝑘 ∈ dom (iEdg‘𝐻) ↔ (𝑗‘𝑙) ∈ dom (iEdg‘𝐻))) |
| 76 | 73, 75 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) → (𝑗‘𝑙) ∈ dom (iEdg‘𝐻)) |
| 77 | 2, 4 | uhgrss 29081 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝐻 ∈ UHGraph ∧ (𝑗‘𝑙) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗‘𝑙)) ⊆ (Vtx‘𝐻)) |
| 78 | 72, 76, 77 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) → ((iEdg‘𝐻)‘(𝑗‘𝑙)) ⊆ (Vtx‘𝐻)) |
| 79 | 78 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹 “ 𝐾) = ((iEdg‘𝐻)‘(𝑗‘𝑙))) → ((iEdg‘𝐻)‘(𝑗‘𝑙)) ⊆ (Vtx‘𝐻)) |
| 80 | | sseq1 4009 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘(𝑗‘𝑙)) → ((𝐹 “ 𝐾) ⊆ (Vtx‘𝐻) ↔ ((iEdg‘𝐻)‘(𝑗‘𝑙)) ⊆ (Vtx‘𝐻))) |
| 81 | 80 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹 “ 𝐾) = ((iEdg‘𝐻)‘(𝑗‘𝑙))) → ((𝐹 “ 𝐾) ⊆ (Vtx‘𝐻) ↔ ((iEdg‘𝐻)‘(𝑗‘𝑙)) ⊆ (Vtx‘𝐻))) |
| 82 | 79, 81 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹 “ 𝐾) = ((iEdg‘𝐻)‘(𝑗‘𝑙))) → (𝐹 “ 𝐾) ⊆ (Vtx‘𝐻)) |
| 83 | | eqeq2 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → ((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘(𝑗‘𝑙)) ↔ (𝐹 “ 𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)))) |
| 84 | 83 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) → ((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘(𝑗‘𝑙)) ↔ (𝐹 “ 𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)))) |
| 85 | | f1of1 6847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) → 𝐹:𝑉–1-1→(Vtx‘𝐻)) |
| 86 | 85 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) → 𝐹:𝑉–1-1→(Vtx‘𝐻)) |
| 87 | 86 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹 “ 𝐾) ⊆ (Vtx‘𝐻)) ∧ 𝐾 ⊆ 𝑉) → 𝐹:𝑉–1-1→(Vtx‘𝐻)) |
| 88 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → 𝐺 ∈ UHGraph) |
| 89 | 88 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) →
𝐺 ∈
UHGraph) |
| 90 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙)) → 𝑙 ∈ dom (iEdg‘𝐺)) |
| 91 | 1, 3 | uhgrss 29081 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝐺 ∈ UHGraph ∧ 𝑙 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑙) ⊆ 𝑉) |
| 92 | 89, 90, 91 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) → ((iEdg‘𝐺)‘𝑙) ⊆ 𝑉) |
| 93 | 92 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹 “ 𝐾) ⊆ (Vtx‘𝐻)) → ((iEdg‘𝐺)‘𝑙) ⊆ 𝑉) |
| 94 | 93 | anim1ci 616 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹 “ 𝐾) ⊆ (Vtx‘𝐻)) ∧ 𝐾 ⊆ 𝑉) → (𝐾 ⊆ 𝑉 ∧ ((iEdg‘𝐺)‘𝑙) ⊆ 𝑉)) |
| 95 | | f1imaeq 7285 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝐹:𝑉–1-1→(Vtx‘𝐻) ∧ (𝐾 ⊆ 𝑉 ∧ ((iEdg‘𝐺)‘𝑙) ⊆ 𝑉)) → ((𝐹 “ 𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) ↔ 𝐾 = ((iEdg‘𝐺)‘𝑙))) |
| 96 | 87, 94, 95 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹 “ 𝐾) ⊆ (Vtx‘𝐻)) ∧ 𝐾 ⊆ 𝑉) → ((𝐹 “ 𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) ↔ 𝐾 = ((iEdg‘𝐺)‘𝑙))) |
| 97 | 3 | uhgrfun 29083 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝐺 ∈ UHGraph → Fun
(iEdg‘𝐺)) |
| 98 | 97 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → Fun (iEdg‘𝐺)) |
| 99 | 98 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) → Fun
(iEdg‘𝐺)) |
| 100 | 3 | iedgedg 29067 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((Fun
(iEdg‘𝐺) ∧ 𝑙 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑙) ∈ (Edg‘𝐺)) |
| 101 | 99, 90, 100 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) → ((iEdg‘𝐺)‘𝑙) ∈ (Edg‘𝐺)) |
| 102 | 101, 6 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) → ((iEdg‘𝐺)‘𝑙) ∈ 𝐼) |
| 103 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝐾 = ((iEdg‘𝐺)‘𝑙) → (𝐾 ∈ 𝐼 ↔ ((iEdg‘𝐺)‘𝑙) ∈ 𝐼)) |
| 104 | 102, 103 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) → (𝐾 = ((iEdg‘𝐺)‘𝑙) → 𝐾 ∈ 𝐼)) |
| 105 | 104 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹 “ 𝐾) ⊆ (Vtx‘𝐻)) ∧ 𝐾 ⊆ 𝑉) → (𝐾 = ((iEdg‘𝐺)‘𝑙) → 𝐾 ∈ 𝐼)) |
| 106 | 96, 105 | sylbid 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹 “ 𝐾) ⊆ (Vtx‘𝐻)) ∧ 𝐾 ⊆ 𝑉) → ((𝐹 “ 𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → 𝐾 ∈ 𝐼)) |
| 107 | 106 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹 “ 𝐾) ⊆ (Vtx‘𝐻)) → (𝐾 ⊆ 𝑉 → ((𝐹 “ 𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → 𝐾 ∈ 𝐼))) |
| 108 | 107 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹 “ 𝐾) ⊆ (Vtx‘𝐻)) → ((𝐹 “ 𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼))) |
| 109 | 108 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) → ((𝐹 “ 𝐾) ⊆ (Vtx‘𝐻) → ((𝐹 “ 𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))) |
| 110 | 109 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) → ((𝐹 “ 𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → ((𝐹 “ 𝐾) ⊆ (Vtx‘𝐻) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))) |
| 111 | 84, 110 | sylbid 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) → ((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘(𝑗‘𝑙)) → ((𝐹 “ 𝐾) ⊆ (Vtx‘𝐻) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))) |
| 112 | 111 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹 “ 𝐾) = ((iEdg‘𝐻)‘(𝑗‘𝑙))) → ((𝐹 “ 𝐾) ⊆ (Vtx‘𝐻) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼))) |
| 113 | 82, 112 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹 “ 𝐾) = ((iEdg‘𝐻)‘(𝑗‘𝑙))) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)) |
| 114 | 113 | exp31 419 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) → (((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → ((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘(𝑗‘𝑙)) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))) |
| 115 | 114 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) → ((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘(𝑗‘𝑙)) → (((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))) |
| 116 | 70, 115 | sylbid 240 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻))) ∧
(𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙))) → ((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) → (((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))) |
| 117 | 116 | exp31 419 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
(((𝐻 ∈ UHGraph ∧
𝐺 ∈ UHGraph) ∧
𝑘 ∈ dom
(iEdg‘𝐻)) →
((𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙)) → ((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) → (((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))))) |
| 118 | 117 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
((𝑙 ∈ dom
(iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙)) → (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) → (((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))))) |
| 119 | 118 | com24 95 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) → (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙)) → (((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))))) |
| 120 | 119 | 3imp 1111 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
(𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) → ((𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗‘𝑙)) → (((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))) |
| 121 | 120 | expdimp 452 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
(𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ 𝑙 ∈ dom (iEdg‘𝐺)) → (𝑘 = (𝑗‘𝑙) → (((iEdg‘𝐻)‘(𝑗‘𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))) |
| 122 | 67, 121 | syl5d 73 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
(𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ 𝑙 ∈ dom (iEdg‘𝐺)) → (𝑘 = (𝑗‘𝑙) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))) |
| 123 | 122 | rexlimdva 3155 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) ∧
(𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) → (∃𝑙 ∈ dom (iEdg‘𝐺)𝑘 = (𝑗‘𝑙) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))) |
| 124 | 123 | 3exp 1120 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) → (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (∃𝑙 ∈ dom (iEdg‘𝐺)𝑘 = (𝑗‘𝑙) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))))) |
| 125 | 124 | com25 99 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻)) →
(∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (∃𝑙 ∈ dom (iEdg‘𝐺)𝑘 = (𝑗‘𝑙) → ((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))))) |
| 126 | 125 | impr 454 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (∃𝑙 ∈ dom (iEdg‘𝐺)𝑘 = (𝑗‘𝑙) → ((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼))))) |
| 127 | 126 | impl 455 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (∃𝑙 ∈ dom (iEdg‘𝐺)𝑘 = (𝑗‘𝑙) → ((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼)))) |
| 128 | 61, 127 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼))) |
| 129 | 128 | rexlimdva 3155 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (∃𝑘 ∈ dom (iEdg‘𝐻)(𝐹 “ 𝐾) = ((iEdg‘𝐻)‘𝑘) → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼))) |
| 130 | 56, 129 | sylbid 240 |
. . . . . . . . . 10
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → ((𝐹 “ 𝐾) ∈ 𝐸 → (𝐾 ⊆ 𝑉 → 𝐾 ∈ 𝐼))) |
| 131 | 130 | impd 410 |
. . . . . . . . 9
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (((𝐹 “ 𝐾) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉) → 𝐾 ∈ 𝐼)) |
| 132 | 52, 131 | impbid 212 |
. . . . . . . 8
⊢ (((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (𝐾 ∈ 𝐼 ↔ ((𝐹 “ 𝐾) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉))) |
| 133 | 132 | exp31 419 |
. . . . . . 7
⊢ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → (𝐾 ∈ 𝐼 ↔ ((𝐹 “ 𝐾) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉))))) |
| 134 | 133 | exlimdv 1933 |
. . . . . 6
⊢ (𝐹:𝑉–1-1-onto→(Vtx‘𝐻) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → (𝐾 ∈ 𝐼 ↔ ((𝐹 “ 𝐾) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉))))) |
| 135 | 134 | imp 406 |
. . . . 5
⊢ ((𝐹:𝑉–1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom
(iEdg‘𝐻) ∧
∀𝑖 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → (𝐾 ∈ 𝐼 ↔ ((𝐹 “ 𝐾) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉)))) |
| 136 | 5, 135 | syl 17 |
. . . 4
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → (𝐾 ∈ 𝐼 ↔ ((𝐹 “ 𝐾) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉)))) |
| 137 | 136 | expd 415 |
. . 3
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐻 ∈ UHGraph → (𝐺 ∈ UHGraph → (𝐾 ∈ 𝐼 ↔ ((𝐹 “ 𝐾) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉))))) |
| 138 | 137 | com13 88 |
. 2
⊢ (𝐺 ∈ UHGraph → (𝐻 ∈ UHGraph → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐾 ∈ 𝐼 ↔ ((𝐹 “ 𝐾) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉))))) |
| 139 | 138 | 3imp 1111 |
1
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐾 ∈ 𝐼 ↔ ((𝐹 “ 𝐾) ∈ 𝐸 ∧ 𝐾 ⊆ 𝑉))) |