Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grimedg Structured version   Visualization version   GIF version

Theorem grimedg 47787
Description: Graph isomorphisms map edges onto the corresponding edges. (Contributed by AV, 7-Jun-2025.)
Hypotheses
Ref Expression
grimedg.v 𝑉 = (Vtx‘𝐺)
grimedg.i 𝐼 = (Edg‘𝐺)
grimedg.e 𝐸 = (Edg‘𝐻)
Assertion
Ref Expression
grimedg ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐾𝐼 ↔ ((𝐹𝐾) ∈ 𝐸𝐾𝑉)))

Proof of Theorem grimedg
Dummy variables 𝑗 𝑘 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grimedg.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 eqid 2740 . . . . . 6 (Vtx‘𝐻) = (Vtx‘𝐻)
3 eqid 2740 . . . . . 6 (iEdg‘𝐺) = (iEdg‘𝐺)
4 eqid 2740 . . . . . 6 (iEdg‘𝐻) = (iEdg‘𝐻)
51, 2, 3, 4grimprop 47753 . . . . 5 (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))))
6 grimedg.i . . . . . . . . . . . 12 𝐼 = (Edg‘𝐺)
76eleq2i 2836 . . . . . . . . . . 11 (𝐾𝐼𝐾 ∈ (Edg‘𝐺))
83uhgredgiedgb 29161 . . . . . . . . . . . 12 (𝐺 ∈ UHGraph → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
98ad2antll 728 . . . . . . . . . . 11 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (𝐾 ∈ (Edg‘𝐺) ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
107, 9bitrid 283 . . . . . . . . . 10 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (𝐾𝐼 ↔ ∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘)))
11 2fveq3 6925 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑘 → ((iEdg‘𝐻)‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗𝑘)))
12 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑘 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑘))
1312imaeq2d 6089 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑘 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
1411, 13eqeq12d 2756 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
1514rspcv 3631 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
1615adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘))))
174uhgrfun 29101 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐻 ∈ UHGraph → Fun (iEdg‘𝐻))
1817ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → Fun (iEdg‘𝐻))
19 f1of 6862 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
2019ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ (𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))) → 𝑗:dom (iEdg‘𝐺)⟶dom (iEdg‘𝐻))
21 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ (𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))) → 𝑘 ∈ dom (iEdg‘𝐺))
2220, 21ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ (𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))) → (𝑗𝑘) ∈ dom (iEdg‘𝐻))
234iedgedg 29085 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Fun (iEdg‘𝐻) ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ (Edg‘𝐻))
24 grimedg.e . . . . . . . . . . . . . . . . . . . . . . . 24 𝐸 = (Edg‘𝐻)
2523, 24eleqtrrdi 2855 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun (iEdg‘𝐻) ∧ (𝑗𝑘) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐸)
2618, 22, 25syl2an2r 684 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ (𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))) → ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐸)
27 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) = ((iEdg‘𝐻)‘(𝑗𝑘)) → ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸 ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐸))
2827eqcoms 2748 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → ((𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸 ↔ ((iEdg‘𝐻)‘(𝑗𝑘)) ∈ 𝐸))
2926, 28syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ (𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻))) → (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸))
3029ex 412 . . . . . . . . . . . . . . . . . . . 20 (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸)))
3130com23 86 . . . . . . . . . . . . . . . . . . 19 (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (((iEdg‘𝐻)‘(𝑗𝑘)) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)) → ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸)))
3216, 31syld 47 . . . . . . . . . . . . . . . . . 18 (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸)))
3332com13 88 . . . . . . . . . . . . . . . . 17 ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸)))
3433impr 454 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸))
3534impl 455 . . . . . . . . . . . . . . 15 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸)
3635adantr 480 . . . . . . . . . . . . . 14 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸)
37 imaeq2 6085 . . . . . . . . . . . . . . . 16 (𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐹𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑘)))
3837eleq1d 2829 . . . . . . . . . . . . . . 15 (𝐾 = ((iEdg‘𝐺)‘𝑘) → ((𝐹𝐾) ∈ 𝐸 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸))
3938adantl 481 . . . . . . . . . . . . . 14 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → ((𝐹𝐾) ∈ 𝐸 ↔ (𝐹 “ ((iEdg‘𝐺)‘𝑘)) ∈ 𝐸))
4036, 39mpbird 257 . . . . . . . . . . . . 13 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐹𝐾) ∈ 𝐸)
411, 3uhgrss 29099 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UHGraph ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑘) ⊆ 𝑉)
4241ex 412 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ UHGraph → (𝑘 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑘) ⊆ 𝑉))
4342ad2antll 728 . . . . . . . . . . . . . . . 16 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (𝑘 ∈ dom (iEdg‘𝐺) → ((iEdg‘𝐺)‘𝑘) ⊆ 𝑉))
4443imp 406 . . . . . . . . . . . . . . 15 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑘) ⊆ 𝑉)
4544adantr 480 . . . . . . . . . . . . . 14 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → ((iEdg‘𝐺)‘𝑘) ⊆ 𝑉)
46 sseq1 4034 . . . . . . . . . . . . . . 15 (𝐾 = ((iEdg‘𝐺)‘𝑘) → (𝐾𝑉 ↔ ((iEdg‘𝐺)‘𝑘) ⊆ 𝑉))
4746adantl 481 . . . . . . . . . . . . . 14 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → (𝐾𝑉 ↔ ((iEdg‘𝐺)‘𝑘) ⊆ 𝑉))
4845, 47mpbird 257 . . . . . . . . . . . . 13 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → 𝐾𝑉)
4940, 48jca 511 . . . . . . . . . . . 12 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) ∧ 𝐾 = ((iEdg‘𝐺)‘𝑘)) → ((𝐹𝐾) ∈ 𝐸𝐾𝑉))
5049ex 412 . . . . . . . . . . 11 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐺)) → (𝐾 = ((iEdg‘𝐺)‘𝑘) → ((𝐹𝐾) ∈ 𝐸𝐾𝑉)))
5150rexlimdva 3161 . . . . . . . . . 10 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (∃𝑘 ∈ dom (iEdg‘𝐺)𝐾 = ((iEdg‘𝐺)‘𝑘) → ((𝐹𝐾) ∈ 𝐸𝐾𝑉)))
5210, 51sylbid 240 . . . . . . . . 9 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (𝐾𝐼 → ((𝐹𝐾) ∈ 𝐸𝐾𝑉)))
5324eleq2i 2836 . . . . . . . . . . . 12 ((𝐹𝐾) ∈ 𝐸 ↔ (𝐹𝐾) ∈ (Edg‘𝐻))
544uhgredgiedgb 29161 . . . . . . . . . . . . 13 (𝐻 ∈ UHGraph → ((𝐹𝐾) ∈ (Edg‘𝐻) ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)(𝐹𝐾) = ((iEdg‘𝐻)‘𝑘)))
5554ad2antrl 727 . . . . . . . . . . . 12 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → ((𝐹𝐾) ∈ (Edg‘𝐻) ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)(𝐹𝐾) = ((iEdg‘𝐻)‘𝑘)))
5653, 55bitrid 283 . . . . . . . . . . 11 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → ((𝐹𝐾) ∈ 𝐸 ↔ ∃𝑘 ∈ dom (iEdg‘𝐻)(𝐹𝐾) = ((iEdg‘𝐻)‘𝑘)))
57 f1ofo 6869 . . . . . . . . . . . . . . . 16 (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) → 𝑗:dom (iEdg‘𝐺)–onto→dom (iEdg‘𝐻))
5857adantr 480 . . . . . . . . . . . . . . 15 ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → 𝑗:dom (iEdg‘𝐺)–onto→dom (iEdg‘𝐻))
5958ad2antlr 726 . . . . . . . . . . . . . 14 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → 𝑗:dom (iEdg‘𝐺)–onto→dom (iEdg‘𝐻))
60 foelrn 7141 . . . . . . . . . . . . . 14 ((𝑗:dom (iEdg‘𝐺)–onto→dom (iEdg‘𝐻) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃𝑙 ∈ dom (iEdg‘𝐺)𝑘 = (𝑗𝑙))
6159, 60sylan 579 . . . . . . . . . . . . 13 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ∃𝑙 ∈ dom (iEdg‘𝐺)𝑘 = (𝑗𝑙))
62 2fveq3 6925 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑙 → ((iEdg‘𝐻)‘(𝑗𝑖)) = ((iEdg‘𝐻)‘(𝑗𝑙)))
63 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝑙 → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘𝑙))
6463imaeq2d 6089 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑙 → (𝐹 “ ((iEdg‘𝐺)‘𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)))
6562, 64eqeq12d 2756 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑙 → (((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) ↔ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))))
6665rspcv 3631 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ dom (iEdg‘𝐺) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))))
6766adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ (𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ 𝑙 ∈ dom (iEdg‘𝐺)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))))
68 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 = (𝑗𝑙) → ((iEdg‘𝐻)‘𝑘) = ((iEdg‘𝐻)‘(𝑗𝑙)))
6968eqeq2d 2751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 = (𝑗𝑙) → ((𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) ↔ (𝐹𝐾) = ((iEdg‘𝐻)‘(𝑗𝑙))))
7069ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) → ((𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) ↔ (𝐹𝐾) = ((iEdg‘𝐻)‘(𝑗𝑙))))
71 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → 𝐻 ∈ UHGraph)
7271ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) → 𝐻 ∈ UHGraph)
73 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) → 𝑘 ∈ dom (iEdg‘𝐻))
74 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑘 = (𝑗𝑙) → (𝑘 ∈ dom (iEdg‘𝐻) ↔ (𝑗𝑙) ∈ dom (iEdg‘𝐻)))
7574ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) → (𝑘 ∈ dom (iEdg‘𝐻) ↔ (𝑗𝑙) ∈ dom (iEdg‘𝐻)))
7673, 75mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) → (𝑗𝑙) ∈ dom (iEdg‘𝐻))
772, 4uhgrss 29099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐻 ∈ UHGraph ∧ (𝑗𝑙) ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘(𝑗𝑙)) ⊆ (Vtx‘𝐻))
7872, 76, 77syl2an2r 684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) → ((iEdg‘𝐻)‘(𝑗𝑙)) ⊆ (Vtx‘𝐻))
7978ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹𝐾) = ((iEdg‘𝐻)‘(𝑗𝑙))) → ((iEdg‘𝐻)‘(𝑗𝑙)) ⊆ (Vtx‘𝐻))
80 sseq1 4034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐹𝐾) = ((iEdg‘𝐻)‘(𝑗𝑙)) → ((𝐹𝐾) ⊆ (Vtx‘𝐻) ↔ ((iEdg‘𝐻)‘(𝑗𝑙)) ⊆ (Vtx‘𝐻)))
8180adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹𝐾) = ((iEdg‘𝐻)‘(𝑗𝑙))) → ((𝐹𝐾) ⊆ (Vtx‘𝐻) ↔ ((iEdg‘𝐻)‘(𝑗𝑙)) ⊆ (Vtx‘𝐻)))
8279, 81mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹𝐾) = ((iEdg‘𝐻)‘(𝑗𝑙))) → (𝐹𝐾) ⊆ (Vtx‘𝐻))
83 eqeq2 2752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → ((𝐹𝐾) = ((iEdg‘𝐻)‘(𝑗𝑙)) ↔ (𝐹𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))))
8483adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) → ((𝐹𝐾) = ((iEdg‘𝐻)‘(𝑗𝑙)) ↔ (𝐹𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))))
85 f1of1 6861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐹:𝑉1-1-onto→(Vtx‘𝐻) → 𝐹:𝑉1-1→(Vtx‘𝐻))
8685ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) → 𝐹:𝑉1-1→(Vtx‘𝐻))
8786ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹𝐾) ⊆ (Vtx‘𝐻)) ∧ 𝐾𝑉) → 𝐹:𝑉1-1→(Vtx‘𝐻))
88 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → 𝐺 ∈ UHGraph)
8988adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) → 𝐺 ∈ UHGraph)
90 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙)) → 𝑙 ∈ dom (iEdg‘𝐺))
911, 3uhgrss 29099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐺 ∈ UHGraph ∧ 𝑙 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑙) ⊆ 𝑉)
9289, 90, 91syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) → ((iEdg‘𝐺)‘𝑙) ⊆ 𝑉)
9392ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹𝐾) ⊆ (Vtx‘𝐻)) → ((iEdg‘𝐺)‘𝑙) ⊆ 𝑉)
9493anim1ci 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹𝐾) ⊆ (Vtx‘𝐻)) ∧ 𝐾𝑉) → (𝐾𝑉 ∧ ((iEdg‘𝐺)‘𝑙) ⊆ 𝑉))
95 f1imaeq 7302 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐹:𝑉1-1→(Vtx‘𝐻) ∧ (𝐾𝑉 ∧ ((iEdg‘𝐺)‘𝑙) ⊆ 𝑉)) → ((𝐹𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) ↔ 𝐾 = ((iEdg‘𝐺)‘𝑙)))
9687, 94, 95syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹𝐾) ⊆ (Vtx‘𝐻)) ∧ 𝐾𝑉) → ((𝐹𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) ↔ 𝐾 = ((iEdg‘𝐺)‘𝑙)))
973uhgrfun 29101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
9897ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → Fun (iEdg‘𝐺))
9998adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) → Fun (iEdg‘𝐺))
1003iedgedg 29085 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((Fun (iEdg‘𝐺) ∧ 𝑙 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑙) ∈ (Edg‘𝐺))
10199, 90, 100syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) → ((iEdg‘𝐺)‘𝑙) ∈ (Edg‘𝐺))
102101, 6eleqtrrdi 2855 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) → ((iEdg‘𝐺)‘𝑙) ∈ 𝐼)
103 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐾 = ((iEdg‘𝐺)‘𝑙) → (𝐾𝐼 ↔ ((iEdg‘𝐺)‘𝑙) ∈ 𝐼))
104102, 103syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) → (𝐾 = ((iEdg‘𝐺)‘𝑙) → 𝐾𝐼))
105104ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹𝐾) ⊆ (Vtx‘𝐻)) ∧ 𝐾𝑉) → (𝐾 = ((iEdg‘𝐺)‘𝑙) → 𝐾𝐼))
10696, 105sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹𝐾) ⊆ (Vtx‘𝐻)) ∧ 𝐾𝑉) → ((𝐹𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → 𝐾𝐼))
107106ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹𝐾) ⊆ (Vtx‘𝐻)) → (𝐾𝑉 → ((𝐹𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → 𝐾𝐼)))
108107com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹𝐾) ⊆ (Vtx‘𝐻)) → ((𝐹𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾𝑉𝐾𝐼)))
109108ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) → ((𝐹𝐾) ⊆ (Vtx‘𝐻) → ((𝐹𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾𝑉𝐾𝐼))))
110109com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) → ((𝐹𝐾) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → ((𝐹𝐾) ⊆ (Vtx‘𝐻) → (𝐾𝑉𝐾𝐼))))
11184, 110sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) → ((𝐹𝐾) = ((iEdg‘𝐻)‘(𝑗𝑙)) → ((𝐹𝐾) ⊆ (Vtx‘𝐻) → (𝐾𝑉𝐾𝐼))))
112111imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹𝐾) = ((iEdg‘𝐻)‘(𝑗𝑙))) → ((𝐹𝐾) ⊆ (Vtx‘𝐻) → (𝐾𝑉𝐾𝐼)))
11382, 112mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) ∧ ((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙))) ∧ (𝐹𝐾) = ((iEdg‘𝐻)‘(𝑗𝑙))) → (𝐾𝑉𝐾𝐼))
114113exp31 419 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) → (((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → ((𝐹𝐾) = ((iEdg‘𝐻)‘(𝑗𝑙)) → (𝐾𝑉𝐾𝐼))))
115114com23 86 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) → ((𝐹𝐾) = ((iEdg‘𝐻)‘(𝑗𝑙)) → (((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾𝑉𝐾𝐼))))
11670, 115sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ (𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙))) → ((𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) → (((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾𝑉𝐾𝐼))))
117116exp31 419 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙)) → ((𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) → (((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾𝑉𝐾𝐼))))))
118117com23 86 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → ((𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙)) → (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) → (((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾𝑉𝐾𝐼))))))
119118com24 95 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → ((𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) → (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙)) → (((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾𝑉𝐾𝐼))))))
1201193imp 1111 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ (𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) → ((𝑙 ∈ dom (iEdg‘𝐺) ∧ 𝑘 = (𝑗𝑙)) → (((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾𝑉𝐾𝐼))))
121120expdimp 452 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ (𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ 𝑙 ∈ dom (iEdg‘𝐺)) → (𝑘 = (𝑗𝑙) → (((iEdg‘𝐻)‘(𝑗𝑙)) = (𝐹 “ ((iEdg‘𝐺)‘𝑙)) → (𝐾𝑉𝐾𝐼))))
12267, 121syl5d 73 . . . . . . . . . . . . . . . . . 18 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ (𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) ∧ 𝑙 ∈ dom (iEdg‘𝐺)) → (𝑘 = (𝑗𝑙) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐾𝑉𝐾𝐼))))
123122rexlimdva 3161 . . . . . . . . . . . . . . . . 17 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) ∧ (𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) ∧ ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻))) → (∃𝑙 ∈ dom (iEdg‘𝐺)𝑘 = (𝑗𝑙) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐾𝑉𝐾𝐼))))
1241233exp 1119 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → ((𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) → (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (∃𝑙 ∈ dom (iEdg‘𝐺)𝑘 = (𝑗𝑙) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (𝐾𝑉𝐾𝐼))))))
125124com25 99 . . . . . . . . . . . . . . 15 ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ 𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻)) → (∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)) → (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (∃𝑙 ∈ dom (iEdg‘𝐺)𝑘 = (𝑗𝑙) → ((𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) → (𝐾𝑉𝐾𝐼))))))
126125impr 454 . . . . . . . . . . . . . 14 ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → (((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (∃𝑙 ∈ dom (iEdg‘𝐺)𝑘 = (𝑗𝑙) → ((𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) → (𝐾𝑉𝐾𝐼)))))
127126impl 455 . . . . . . . . . . . . 13 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → (∃𝑙 ∈ dom (iEdg‘𝐺)𝑘 = (𝑗𝑙) → ((𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) → (𝐾𝑉𝐾𝐼))))
12861, 127mpd 15 . . . . . . . . . . . 12 ((((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) ∧ 𝑘 ∈ dom (iEdg‘𝐻)) → ((𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) → (𝐾𝑉𝐾𝐼)))
129128rexlimdva 3161 . . . . . . . . . . 11 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (∃𝑘 ∈ dom (iEdg‘𝐻)(𝐹𝐾) = ((iEdg‘𝐻)‘𝑘) → (𝐾𝑉𝐾𝐼)))
13056, 129sylbid 240 . . . . . . . . . 10 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → ((𝐹𝐾) ∈ 𝐸 → (𝐾𝑉𝐾𝐼)))
131130impd 410 . . . . . . . . 9 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (((𝐹𝐾) ∈ 𝐸𝐾𝑉) → 𝐾𝐼))
13252, 131impbid 212 . . . . . . . 8 (((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ (𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) ∧ (𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph)) → (𝐾𝐼 ↔ ((𝐹𝐾) ∈ 𝐸𝐾𝑉)))
133132exp31 419 . . . . . . 7 (𝐹:𝑉1-1-onto→(Vtx‘𝐻) → ((𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → (𝐾𝐼 ↔ ((𝐹𝐾) ∈ 𝐸𝐾𝑉)))))
134133exlimdv 1932 . . . . . 6 (𝐹:𝑉1-1-onto→(Vtx‘𝐻) → (∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖))) → ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → (𝐾𝐼 ↔ ((𝐹𝐾) ∈ 𝐸𝐾𝑉)))))
135134imp 406 . . . . 5 ((𝐹:𝑉1-1-onto→(Vtx‘𝐻) ∧ ∃𝑗(𝑗:dom (iEdg‘𝐺)–1-1-onto→dom (iEdg‘𝐻) ∧ ∀𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐻)‘(𝑗𝑖)) = (𝐹 “ ((iEdg‘𝐺)‘𝑖)))) → ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → (𝐾𝐼 ↔ ((𝐹𝐾) ∈ 𝐸𝐾𝑉))))
1365, 135syl 17 . . . 4 (𝐹 ∈ (𝐺 GraphIso 𝐻) → ((𝐻 ∈ UHGraph ∧ 𝐺 ∈ UHGraph) → (𝐾𝐼 ↔ ((𝐹𝐾) ∈ 𝐸𝐾𝑉))))
137136expd 415 . . 3 (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐻 ∈ UHGraph → (𝐺 ∈ UHGraph → (𝐾𝐼 ↔ ((𝐹𝐾) ∈ 𝐸𝐾𝑉)))))
138137com13 88 . 2 (𝐺 ∈ UHGraph → (𝐻 ∈ UHGraph → (𝐹 ∈ (𝐺 GraphIso 𝐻) → (𝐾𝐼 ↔ ((𝐹𝐾) ∈ 𝐸𝐾𝑉)))))
1391383imp 1111 1 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝐾𝐼 ↔ ((𝐹𝐾) ∈ 𝐸𝐾𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  wss 3976  dom cdm 5700  cima 5703  Fun wfun 6567  wf 6569  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  iEdgciedg 29032  Edgcedg 29082  UHGraphcuhgr 29091   GraphIso cgrim 47745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-edg 29083  df-uhgr 29093  df-grim 47748
This theorem is referenced by:  grimgrtri  47798
  Copyright terms: Public domain W3C validator